Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208189904> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3208189904 endingPage "5344" @default.
- W3208189904 startingPage "5344" @default.
- W3208189904 abstract "In any document, graphical elements like tables, figures, and formulas contain essential information. The processing and interpretation of such information require specialized algorithms. Off-the-shelf OCR components cannot process this information reliably. Therefore, an essential step in document analysis pipelines is to detect these graphical components. It leads to a high-level conceptual understanding of the documents that make the digitization of documents viable. Since the advent of deep learning, deep learning-based object detection performance has improved many folds. This work outlines and summarizes the deep learning approaches for detecting graphical page objects in document images. Therefore, we discuss the most relevant deep learning-based approaches and state-of-the-art graphical page object detection in document images. This work provides a comprehensive understanding of the current state-of-the-art and related challenges. Furthermore, we discuss leading datasets along with the quantitative evaluation. Moreover, it discusses briefly the promising directions that can be utilized for further improvements." @default.
- W3208189904 created "2021-11-08" @default.
- W3208189904 creator A5051437282 @default.
- W3208189904 creator A5051650277 @default.
- W3208189904 creator A5086894159 @default.
- W3208189904 creator A5090001012 @default.
- W3208189904 date "2021-06-09" @default.
- W3208189904 modified "2023-10-18" @default.
- W3208189904 title "A Survey of Graphical Page Object Detection with Deep Neural Networks" @default.
- W3208189904 cites W2024915064 @default.
- W3208189904 cites W2031489346 @default.
- W3208189904 cites W2119014534 @default.
- W3208189904 cites W2143786659 @default.
- W3208189904 cites W2212899008 @default.
- W3208189904 cites W2898640137 @default.
- W3208189904 cites W2901890385 @default.
- W3208189904 cites W2917528797 @default.
- W3208189904 cites W2972006294 @default.
- W3208189904 cites W2989676862 @default.
- W3208189904 cites W3023097746 @default.
- W3208189904 cites W3088382477 @default.
- W3208189904 cites W639708223 @default.
- W3208189904 doi "https://doi.org/10.3390/app11125344" @default.
- W3208189904 hasPublicationYear "2021" @default.
- W3208189904 type Work @default.
- W3208189904 sameAs 3208189904 @default.
- W3208189904 citedByCount "17" @default.
- W3208189904 countsByYear W32081899042021 @default.
- W3208189904 countsByYear W32081899042022 @default.
- W3208189904 countsByYear W32081899042023 @default.
- W3208189904 crossrefType "journal-article" @default.
- W3208189904 hasAuthorship W3208189904A5051437282 @default.
- W3208189904 hasAuthorship W3208189904A5051650277 @default.
- W3208189904 hasAuthorship W3208189904A5086894159 @default.
- W3208189904 hasAuthorship W3208189904A5090001012 @default.
- W3208189904 hasBestOaLocation W32081899041 @default.
- W3208189904 hasConcept C108583219 @default.
- W3208189904 hasConcept C111919701 @default.
- W3208189904 hasConcept C124101348 @default.
- W3208189904 hasConcept C154945302 @default.
- W3208189904 hasConcept C155846161 @default.
- W3208189904 hasConcept C23123220 @default.
- W3208189904 hasConcept C2522767166 @default.
- W3208189904 hasConcept C2779308522 @default.
- W3208189904 hasConcept C2781238097 @default.
- W3208189904 hasConcept C31972630 @default.
- W3208189904 hasConcept C36464697 @default.
- W3208189904 hasConcept C41008148 @default.
- W3208189904 hasConcept C98045186 @default.
- W3208189904 hasConceptScore W3208189904C108583219 @default.
- W3208189904 hasConceptScore W3208189904C111919701 @default.
- W3208189904 hasConceptScore W3208189904C124101348 @default.
- W3208189904 hasConceptScore W3208189904C154945302 @default.
- W3208189904 hasConceptScore W3208189904C155846161 @default.
- W3208189904 hasConceptScore W3208189904C23123220 @default.
- W3208189904 hasConceptScore W3208189904C2522767166 @default.
- W3208189904 hasConceptScore W3208189904C2779308522 @default.
- W3208189904 hasConceptScore W3208189904C2781238097 @default.
- W3208189904 hasConceptScore W3208189904C31972630 @default.
- W3208189904 hasConceptScore W3208189904C36464697 @default.
- W3208189904 hasConceptScore W3208189904C41008148 @default.
- W3208189904 hasConceptScore W3208189904C98045186 @default.
- W3208189904 hasIssue "12" @default.
- W3208189904 hasLocation W32081899041 @default.
- W3208189904 hasLocation W32081899042 @default.
- W3208189904 hasLocation W32081899043 @default.
- W3208189904 hasOpenAccess W3208189904 @default.
- W3208189904 hasPrimaryLocation W32081899041 @default.
- W3208189904 hasRelatedWork W1539704186 @default.
- W3208189904 hasRelatedWork W2286687623 @default.
- W3208189904 hasRelatedWork W2347632764 @default.
- W3208189904 hasRelatedWork W2353982255 @default.
- W3208189904 hasRelatedWork W2399890175 @default.
- W3208189904 hasRelatedWork W2480493049 @default.
- W3208189904 hasRelatedWork W3202479762 @default.
- W3208189904 hasRelatedWork W4308177873 @default.
- W3208189904 hasRelatedWork W4322582183 @default.
- W3208189904 hasRelatedWork W1937392525 @default.
- W3208189904 hasVolume "11" @default.
- W3208189904 isParatext "false" @default.
- W3208189904 isRetracted "false" @default.
- W3208189904 magId "3208189904" @default.
- W3208189904 workType "article" @default.