Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208193598> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3208193598 endingPage "263" @default.
- W3208193598 startingPage "249" @default.
- W3208193598 abstract "In recent years, the development and influence of wind power in the power system have witnessed, which has led to a significant increase in the production and use of wind energy worldwide. Considering the variability of wind velocity, planning, and managing wind intermittency are important parts of wind energy development, so predicting wind speeds for high-efficiency energy production is one of the most important power system planning issues. Nowadays, machine learning methods are widely used to model complex and nonlinear systems such as wind speed or solar radiation. In this chapter, wind speed prediction models using machine learning applications are presented to solve power system planning problems. This study utilized two machine learning applications called multilayer perceptron (MLP) and group method of data handling (GMDH) to predict wind speed. To evaluate the proposed models, the authors will predict the wind speed for 15 months as a short-term wind speed prediction. Wind speed prediction in the 15 months horizon is done hourly for each day. The presented results illustrate the proposed models’ capability and effectiveness for predicting short-term wind speeds based on historical wind speed data and the good correlation between the predicted and actual values of data. Wind speed forecasting and wind resource assessment can show the right investment direction to decision-makers and investors, thereby developing the wind energy industry and creating a sustainable power system." @default.
- W3208193598 created "2021-11-08" @default.
- W3208193598 creator A5001633349 @default.
- W3208193598 creator A5027762704 @default.
- W3208193598 creator A5051164485 @default.
- W3208193598 creator A5053963641 @default.
- W3208193598 creator A5068581805 @default.
- W3208193598 date "2021-01-01" @default.
- W3208193598 modified "2023-09-25" @default.
- W3208193598 title "Wind Speed Forecasting Using Innovative Regression Applications of Machine Learning Techniques" @default.
- W3208193598 cites W1994170512 @default.
- W3208193598 cites W1995094777 @default.
- W3208193598 cites W2024692966 @default.
- W3208193598 cites W2041105792 @default.
- W3208193598 cites W2067543652 @default.
- W3208193598 cites W2074715647 @default.
- W3208193598 cites W2114471530 @default.
- W3208193598 cites W2149530412 @default.
- W3208193598 cites W2150913357 @default.
- W3208193598 cites W2468900667 @default.
- W3208193598 cites W2581822685 @default.
- W3208193598 cites W2755132572 @default.
- W3208193598 cites W2783952819 @default.
- W3208193598 cites W2807252330 @default.
- W3208193598 cites W2821843609 @default.
- W3208193598 cites W2895135437 @default.
- W3208193598 cites W2897932070 @default.
- W3208193598 cites W2899996856 @default.
- W3208193598 cites W2906060253 @default.
- W3208193598 cites W2910279921 @default.
- W3208193598 cites W2914856364 @default.
- W3208193598 cites W2952080445 @default.
- W3208193598 cites W2962708580 @default.
- W3208193598 cites W2962752580 @default.
- W3208193598 cites W2964105969 @default.
- W3208193598 cites W2971571896 @default.
- W3208193598 cites W2984832530 @default.
- W3208193598 cites W3004852406 @default.
- W3208193598 cites W3007605874 @default.
- W3208193598 cites W3016741933 @default.
- W3208193598 cites W3033591971 @default.
- W3208193598 cites W3033785644 @default.
- W3208193598 cites W3043435009 @default.
- W3208193598 cites W3045836002 @default.
- W3208193598 cites W3053488909 @default.
- W3208193598 cites W3066024730 @default.
- W3208193598 cites W3081576544 @default.
- W3208193598 doi "https://doi.org/10.1007/978-3-030-77696-1_12" @default.
- W3208193598 hasPublicationYear "2021" @default.
- W3208193598 type Work @default.
- W3208193598 sameAs 3208193598 @default.
- W3208193598 citedByCount "1" @default.
- W3208193598 countsByYear W32081935982022 @default.
- W3208193598 crossrefType "book-chapter" @default.
- W3208193598 hasAuthorship W3208193598A5001633349 @default.
- W3208193598 hasAuthorship W3208193598A5027762704 @default.
- W3208193598 hasAuthorship W3208193598A5051164485 @default.
- W3208193598 hasAuthorship W3208193598A5053963641 @default.
- W3208193598 hasAuthorship W3208193598A5068581805 @default.
- W3208193598 hasConcept C119599485 @default.
- W3208193598 hasConcept C119857082 @default.
- W3208193598 hasConcept C127413603 @default.
- W3208193598 hasConcept C153294291 @default.
- W3208193598 hasConcept C154945302 @default.
- W3208193598 hasConcept C161067210 @default.
- W3208193598 hasConcept C196558001 @default.
- W3208193598 hasConcept C205649164 @default.
- W3208193598 hasConcept C2780388094 @default.
- W3208193598 hasConcept C41008148 @default.
- W3208193598 hasConcept C78600449 @default.
- W3208193598 hasConceptScore W3208193598C119599485 @default.
- W3208193598 hasConceptScore W3208193598C119857082 @default.
- W3208193598 hasConceptScore W3208193598C127413603 @default.
- W3208193598 hasConceptScore W3208193598C153294291 @default.
- W3208193598 hasConceptScore W3208193598C154945302 @default.
- W3208193598 hasConceptScore W3208193598C161067210 @default.
- W3208193598 hasConceptScore W3208193598C196558001 @default.
- W3208193598 hasConceptScore W3208193598C205649164 @default.
- W3208193598 hasConceptScore W3208193598C2780388094 @default.
- W3208193598 hasConceptScore W3208193598C41008148 @default.
- W3208193598 hasConceptScore W3208193598C78600449 @default.
- W3208193598 hasLocation W32081935981 @default.
- W3208193598 hasOpenAccess W3208193598 @default.
- W3208193598 hasPrimaryLocation W32081935981 @default.
- W3208193598 hasRelatedWork W2020847322 @default.
- W3208193598 hasRelatedWork W2060606400 @default.
- W3208193598 hasRelatedWork W2130522552 @default.
- W3208193598 hasRelatedWork W2467981454 @default.
- W3208193598 hasRelatedWork W2502399335 @default.
- W3208193598 hasRelatedWork W2543278773 @default.
- W3208193598 hasRelatedWork W2810416394 @default.
- W3208193598 hasRelatedWork W2995861307 @default.
- W3208193598 hasRelatedWork W4383370934 @default.
- W3208193598 hasRelatedWork W98317161 @default.
- W3208193598 isParatext "false" @default.
- W3208193598 isRetracted "false" @default.
- W3208193598 magId "3208193598" @default.
- W3208193598 workType "book-chapter" @default.