Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208199861> ?p ?o ?g. }
- W3208199861 endingPage "150" @default.
- W3208199861 startingPage "133" @default.
- W3208199861 abstract "In this book chapter, the authors aim to deliver in-depth details about the applications of deep learning and swarm intelligent algorithms for image-based cancer recognition and diagnosis. In this study, we first describe the overview of popular architectures of deep learning and swarm intelligent algorithms used for cancer recognition. In deep learning, we talk about convolutional neural networks, fully connected convolutional networks, and auto-encoders. In swarm intelligent algorithms, we talk about architecture of genetic algorithms. Secondly, this study presents a brief survey about the research exploiting deep learning and swarm intelligent algorithms for cancer recognition." @default.
- W3208199861 created "2021-11-08" @default.
- W3208199861 creator A5018871446 @default.
- W3208199861 creator A5034291033 @default.
- W3208199861 creator A5071755287 @default.
- W3208199861 creator A5074396135 @default.
- W3208199861 date "2021-10-30" @default.
- W3208199861 modified "2023-10-16" @default.
- W3208199861 title "Applications of Swarm Intelligent and Deep Learning Algorithms for Image-Based Cancer Recognition" @default.
- W3208199861 cites W1044489389 @default.
- W3208199861 cites W1045194293 @default.
- W3208199861 cites W1524094261 @default.
- W3208199861 cites W1745334888 @default.
- W3208199861 cites W1903029394 @default.
- W3208199861 cites W1978469498 @default.
- W3208199861 cites W1988334859 @default.
- W3208199861 cites W1990985109 @default.
- W3208199861 cites W1997435908 @default.
- W3208199861 cites W2031223143 @default.
- W3208199861 cites W2037125973 @default.
- W3208199861 cites W2048297895 @default.
- W3208199861 cites W2051616646 @default.
- W3208199861 cites W2065711422 @default.
- W3208199861 cites W2070919743 @default.
- W3208199861 cites W2078014989 @default.
- W3208199861 cites W2086530527 @default.
- W3208199861 cites W2092455934 @default.
- W3208199861 cites W2096866836 @default.
- W3208199861 cites W2103004421 @default.
- W3208199861 cites W2137682223 @default.
- W3208199861 cites W2141619730 @default.
- W3208199861 cites W2160988670 @default.
- W3208199861 cites W2163922914 @default.
- W3208199861 cites W221870726 @default.
- W3208199861 cites W2274394732 @default.
- W3208199861 cites W2293130453 @default.
- W3208199861 cites W2295331069 @default.
- W3208199861 cites W2310992461 @default.
- W3208199861 cites W2524399695 @default.
- W3208199861 cites W2533181885 @default.
- W3208199861 cites W2534299759 @default.
- W3208199861 cites W2535789538 @default.
- W3208199861 cites W2554892747 @default.
- W3208199861 cites W2557644620 @default.
- W3208199861 cites W2587828787 @default.
- W3208199861 cites W2593949166 @default.
- W3208199861 cites W2727347885 @default.
- W3208199861 cites W2749264889 @default.
- W3208199861 cites W2769902530 @default.
- W3208199861 cites W2770057755 @default.
- W3208199861 cites W2788686457 @default.
- W3208199861 cites W2791701700 @default.
- W3208199861 cites W2794446958 @default.
- W3208199861 cites W2805508285 @default.
- W3208199861 cites W2806853752 @default.
- W3208199861 cites W2810336020 @default.
- W3208199861 cites W2891417585 @default.
- W3208199861 cites W2898209894 @default.
- W3208199861 cites W2903058596 @default.
- W3208199861 cites W2911605224 @default.
- W3208199861 cites W2919115771 @default.
- W3208199861 cites W2963553763 @default.
- W3208199861 cites W2969546126 @default.
- W3208199861 cites W2973337197 @default.
- W3208199861 cites W2988529604 @default.
- W3208199861 cites W3003718268 @default.
- W3208199861 cites W3015535112 @default.
- W3208199861 cites W3015652082 @default.
- W3208199861 cites W3015887428 @default.
- W3208199861 cites W3094171900 @default.
- W3208199861 cites W4205686602 @default.
- W3208199861 cites W4244240995 @default.
- W3208199861 cites W54257720 @default.
- W3208199861 cites W620009810 @default.
- W3208199861 cites W75694267 @default.
- W3208199861 doi "https://doi.org/10.1007/978-981-16-6265-2_9" @default.
- W3208199861 hasPublicationYear "2021" @default.
- W3208199861 type Work @default.
- W3208199861 sameAs 3208199861 @default.
- W3208199861 citedByCount "10" @default.
- W3208199861 countsByYear W32081998612022 @default.
- W3208199861 countsByYear W32081998612023 @default.
- W3208199861 crossrefType "book-chapter" @default.
- W3208199861 hasAuthorship W3208199861A5018871446 @default.
- W3208199861 hasAuthorship W3208199861A5034291033 @default.
- W3208199861 hasAuthorship W3208199861A5071755287 @default.
- W3208199861 hasAuthorship W3208199861A5074396135 @default.
- W3208199861 hasConcept C108583219 @default.
- W3208199861 hasConcept C11413529 @default.
- W3208199861 hasConcept C119487961 @default.
- W3208199861 hasConcept C119857082 @default.
- W3208199861 hasConcept C154945302 @default.
- W3208199861 hasConcept C181335050 @default.
- W3208199861 hasConcept C41008148 @default.
- W3208199861 hasConcept C81363708 @default.
- W3208199861 hasConcept C85617194 @default.
- W3208199861 hasConceptScore W3208199861C108583219 @default.
- W3208199861 hasConceptScore W3208199861C11413529 @default.