Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208208234> ?p ?o ?g. }
- W3208208234 endingPage "113880" @default.
- W3208208234 startingPage "113880" @default.
- W3208208234 abstract "Positone and semipositone boundary value problems are semilinear elliptic partial differential equations (PDEs) that arise in reaction–diffusion models in mathematical biology and the theory of nonlinear heat generation. Under certain conditions, the problems may have multiple positive solutions or even nonexistence of a positive solution. We develop analytic techniques for proving admissibility, stability, and convergence results for simple finite difference approximations of positive solutions to sublinear problems. We also develop guaranteed solvers that can detect nonuniqueness for positone problems and nonexistence for semipositone problems. The admissibility and stability results are based on adapting the method of sub- and supersolutions typically used to analyze the underlying PDEs. The new convergence analysis technique directly shows that all pointwise limits of finite difference approximations are solutions to the boundary value problem eliminating the possibility of false algebraic solutions plaguing the convergence of the methods. Most known approximation methods for positone and semipositone boundary value problems rely upon shooting techniques; hence, they are restricted to one-dimensional problems and/or radial solutions. The results in this paper will serve as a foundation for approximating positone and semipositone boundary value problems in higher dimensions and on more general domains using simple approximation methods. Numerical tests for known applied problems with multiple positive solutions are provided. The tests focus on approximating certain positive solutions as well as generating discrete bifurcation curves that support the known existence and uniqueness results for the PDE problem." @default.
- W3208208234 created "2021-11-08" @default.
- W3208208234 creator A5008788794 @default.
- W3208208234 creator A5021794495 @default.
- W3208208234 creator A5062583949 @default.
- W3208208234 date "2022-04-01" @default.
- W3208208234 modified "2023-09-27" @default.
- W3208208234 title "Convergence, stability analysis, and solvers for approximating sublinear positone and semipositone boundary value problems using finite difference methods" @default.
- W3208208234 cites W1505581630 @default.
- W3208208234 cites W1963806484 @default.
- W3208208234 cites W1967676806 @default.
- W3208208234 cites W1982357817 @default.
- W3208208234 cites W1984241241 @default.
- W3208208234 cites W1984781443 @default.
- W3208208234 cites W1985843599 @default.
- W3208208234 cites W1986306555 @default.
- W3208208234 cites W1995464753 @default.
- W3208208234 cites W2001686113 @default.
- W3208208234 cites W2002182424 @default.
- W3208208234 cites W2003539068 @default.
- W3208208234 cites W2013511487 @default.
- W3208208234 cites W2019644450 @default.
- W3208208234 cites W2020740704 @default.
- W3208208234 cites W2027577940 @default.
- W3208208234 cites W2030004448 @default.
- W3208208234 cites W2032316144 @default.
- W3208208234 cites W2045870218 @default.
- W3208208234 cites W2054563910 @default.
- W3208208234 cites W2057550646 @default.
- W3208208234 cites W2064219620 @default.
- W3208208234 cites W2069941038 @default.
- W3208208234 cites W2094247338 @default.
- W3208208234 cites W2117689372 @default.
- W3208208234 cites W2120528015 @default.
- W3208208234 cites W2122069319 @default.
- W3208208234 cites W2140727761 @default.
- W3208208234 cites W2177195156 @default.
- W3208208234 cites W2312518672 @default.
- W3208208234 cites W2610240197 @default.
- W3208208234 cites W2886895161 @default.
- W3208208234 cites W2962828807 @default.
- W3208208234 cites W3143829609 @default.
- W3208208234 cites W2033826399 @default.
- W3208208234 doi "https://doi.org/10.1016/j.cam.2021.113880" @default.
- W3208208234 hasPublicationYear "2022" @default.
- W3208208234 type Work @default.
- W3208208234 sameAs 3208208234 @default.
- W3208208234 citedByCount "2" @default.
- W3208208234 countsByYear W32082082342022 @default.
- W3208208234 countsByYear W32082082342023 @default.
- W3208208234 crossrefType "journal-article" @default.
- W3208208234 hasAuthorship W3208208234A5008788794 @default.
- W3208208234 hasAuthorship W3208208234A5021794495 @default.
- W3208208234 hasAuthorship W3208208234A5062583949 @default.
- W3208208234 hasBestOaLocation W32082082341 @default.
- W3208208234 hasConcept C111472728 @default.
- W3208208234 hasConcept C112972136 @default.
- W3208208234 hasConcept C117160843 @default.
- W3208208234 hasConcept C119857082 @default.
- W3208208234 hasConcept C121332964 @default.
- W3208208234 hasConcept C134306372 @default.
- W3208208234 hasConcept C138885662 @default.
- W3208208234 hasConcept C158622935 @default.
- W3208208234 hasConcept C162324750 @default.
- W3208208234 hasConcept C181330731 @default.
- W3208208234 hasConcept C182310444 @default.
- W3208208234 hasConcept C2777021972 @default.
- W3208208234 hasConcept C2777303404 @default.
- W3208208234 hasConcept C2777984123 @default.
- W3208208234 hasConcept C2780586882 @default.
- W3208208234 hasConcept C28826006 @default.
- W3208208234 hasConcept C33923547 @default.
- W3208208234 hasConcept C41008148 @default.
- W3208208234 hasConcept C48753275 @default.
- W3208208234 hasConcept C50522688 @default.
- W3208208234 hasConcept C62354387 @default.
- W3208208234 hasConcept C62520636 @default.
- W3208208234 hasConceptScore W3208208234C111472728 @default.
- W3208208234 hasConceptScore W3208208234C112972136 @default.
- W3208208234 hasConceptScore W3208208234C117160843 @default.
- W3208208234 hasConceptScore W3208208234C119857082 @default.
- W3208208234 hasConceptScore W3208208234C121332964 @default.
- W3208208234 hasConceptScore W3208208234C134306372 @default.
- W3208208234 hasConceptScore W3208208234C138885662 @default.
- W3208208234 hasConceptScore W3208208234C158622935 @default.
- W3208208234 hasConceptScore W3208208234C162324750 @default.
- W3208208234 hasConceptScore W3208208234C181330731 @default.
- W3208208234 hasConceptScore W3208208234C182310444 @default.
- W3208208234 hasConceptScore W3208208234C2777021972 @default.
- W3208208234 hasConceptScore W3208208234C2777303404 @default.
- W3208208234 hasConceptScore W3208208234C2777984123 @default.
- W3208208234 hasConceptScore W3208208234C2780586882 @default.
- W3208208234 hasConceptScore W3208208234C28826006 @default.
- W3208208234 hasConceptScore W3208208234C33923547 @default.
- W3208208234 hasConceptScore W3208208234C41008148 @default.
- W3208208234 hasConceptScore W3208208234C48753275 @default.
- W3208208234 hasConceptScore W3208208234C50522688 @default.
- W3208208234 hasConceptScore W3208208234C62354387 @default.