Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208226784> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3208226784 abstract "The water distribution network is one of the critical buried infrastructures of a nation. Failure of any water pipes or water mains can disrupt the everyday life of the inhabitants and can lead to significant economic loss. Hence, routine inspections are essential to sustain the water supply among the communities. Nowadays, inspection platforms with cameras, which can record the internal condition of the pipelines emerge to be one of the most attractive solutions. However, these inspection platforms often encounter some problems regarding autonomous navigation. As a result, an interruption occurs in the videotaping process which hampers the condition assessment process for the pipelines. Therefore, this paper presents a deep learning-based environment prediction model, which can predict the next instance of the environment inside the pipelines and enhance the autonomous navigation of the pipelines. The main objective of this paper is to make the inspection platforms intelligent enough to activate the control mechanisms and to pass through branches, curvature, elbows, etc. The results from the study show that integration of the environment prediction model with an embedded device can enhance the autonomous navigation inside the pipelines. This will also aid in the uninterrupted videotaping process and ensure better condition assessment of the water pipelines." @default.
- W3208226784 created "2021-11-08" @default.
- W3208226784 creator A5019685555 @default.
- W3208226784 creator A5023992803 @default.
- W3208226784 creator A5030323127 @default.
- W3208226784 creator A5032028908 @default.
- W3208226784 creator A5067081298 @default.
- W3208226784 creator A5090310509 @default.
- W3208226784 date "2021-06-20" @default.
- W3208226784 modified "2023-09-24" @default.
- W3208226784 title "Environment Prediction to Enhance the Navigation System of Water Pipeline Inspection Platforms" @default.
- W3208226784 cites W1976964652 @default.
- W3208226784 cites W1994198993 @default.
- W3208226784 cites W2015919848 @default.
- W3208226784 cites W2102834897 @default.
- W3208226784 cites W2157893028 @default.
- W3208226784 cites W2339754110 @default.
- W3208226784 cites W2734960757 @default.
- W3208226784 cites W2765333890 @default.
- W3208226784 cites W2780046032 @default.
- W3208226784 cites W2886238227 @default.
- W3208226784 cites W2902724941 @default.
- W3208226784 cites W2963073614 @default.
- W3208226784 cites W2963470893 @default.
- W3208226784 cites W2969277962 @default.
- W3208226784 cites W2990103772 @default.
- W3208226784 cites W3010789021 @default.
- W3208226784 cites W3012344225 @default.
- W3208226784 cites W3015256491 @default.
- W3208226784 cites W3018786341 @default.
- W3208226784 cites W3156758967 @default.
- W3208226784 doi "https://doi.org/10.1109/isie45552.2021.9576182" @default.
- W3208226784 hasPublicationYear "2021" @default.
- W3208226784 type Work @default.
- W3208226784 sameAs 3208226784 @default.
- W3208226784 citedByCount "1" @default.
- W3208226784 countsByYear W32082267842022 @default.
- W3208226784 crossrefType "proceedings-article" @default.
- W3208226784 hasAuthorship W3208226784A5019685555 @default.
- W3208226784 hasAuthorship W3208226784A5023992803 @default.
- W3208226784 hasAuthorship W3208226784A5030323127 @default.
- W3208226784 hasAuthorship W3208226784A5032028908 @default.
- W3208226784 hasAuthorship W3208226784A5067081298 @default.
- W3208226784 hasAuthorship W3208226784A5090310509 @default.
- W3208226784 hasConcept C111919701 @default.
- W3208226784 hasConcept C119599485 @default.
- W3208226784 hasConcept C127413603 @default.
- W3208226784 hasConcept C165801399 @default.
- W3208226784 hasConcept C175309249 @default.
- W3208226784 hasConcept C184773241 @default.
- W3208226784 hasConcept C199104240 @default.
- W3208226784 hasConcept C199360897 @default.
- W3208226784 hasConcept C41008148 @default.
- W3208226784 hasConcept C43521106 @default.
- W3208226784 hasConcept C78519656 @default.
- W3208226784 hasConcept C79403827 @default.
- W3208226784 hasConcept C98045186 @default.
- W3208226784 hasConceptScore W3208226784C111919701 @default.
- W3208226784 hasConceptScore W3208226784C119599485 @default.
- W3208226784 hasConceptScore W3208226784C127413603 @default.
- W3208226784 hasConceptScore W3208226784C165801399 @default.
- W3208226784 hasConceptScore W3208226784C175309249 @default.
- W3208226784 hasConceptScore W3208226784C184773241 @default.
- W3208226784 hasConceptScore W3208226784C199104240 @default.
- W3208226784 hasConceptScore W3208226784C199360897 @default.
- W3208226784 hasConceptScore W3208226784C41008148 @default.
- W3208226784 hasConceptScore W3208226784C43521106 @default.
- W3208226784 hasConceptScore W3208226784C78519656 @default.
- W3208226784 hasConceptScore W3208226784C79403827 @default.
- W3208226784 hasConceptScore W3208226784C98045186 @default.
- W3208226784 hasLocation W32082267841 @default.
- W3208226784 hasOpenAccess W3208226784 @default.
- W3208226784 hasPrimaryLocation W32082267841 @default.
- W3208226784 hasRelatedWork W2049652730 @default.
- W3208226784 hasRelatedWork W2056926904 @default.
- W3208226784 hasRelatedWork W2357506238 @default.
- W3208226784 hasRelatedWork W2367869073 @default.
- W3208226784 hasRelatedWork W2773443698 @default.
- W3208226784 hasRelatedWork W2803457951 @default.
- W3208226784 hasRelatedWork W2989254254 @default.
- W3208226784 hasRelatedWork W3208226784 @default.
- W3208226784 hasRelatedWork W4255901663 @default.
- W3208226784 hasRelatedWork W48058006 @default.
- W3208226784 isParatext "false" @default.
- W3208226784 isRetracted "false" @default.
- W3208226784 magId "3208226784" @default.
- W3208226784 workType "article" @default.