Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208235786> ?p ?o ?g. }
- W3208235786 endingPage "10034" @default.
- W3208235786 startingPage "10034" @default.
- W3208235786 abstract "Groundwater is one of the primary sources for the daily water requirements of the masses, but it is subjected to contamination due to the pollutants, such as nitrate, percolating through the soil with water. Especially in built-up areas, groundwater vulnerability and contamination are of major concern, and require appropriate consideration. The present study develops a novel framework for assessing groundwater nitrate contamination risk for the area along the Karakoram Highway, which is a part of the China Pakistan Economic Corridor (CPEC) route in northern Pakistan. A groundwater vulnerability map was prepared using the DRASTIC model. The nitrate concentration data from a previous study were used to formulate the nitrate contamination map. Three machine learning (ML) models, i.e., Support Vector Machine (SVM), Multivariate Discriminant Analysis (MDA), and Boosted Regression Trees (BRT), were used to analyze the probability of groundwater contamination incidence. Furthermore, groundwater contamination probability maps were obtained utilizing the ensemble modeling approach. The models were calibrated and validated through calibration trials, using the area under the receiver operating characteristic curve method (AUC), where a minimum AUC threshold value of 80% was achieved. Results indicated the accuracy of the models to be in the range of 0.82–0.87. The final groundwater contamination risk map highlights that 34% of the area is moderately vulnerable to groundwater contamination, and 13% of the area is exposed to high groundwater contamination risk. The findings of this study can facilitate decision-making regarding the location of future built-up areas properly in order to mitigate the nitrate contamination that can further reduce the associated health risks." @default.
- W3208235786 created "2021-11-08" @default.
- W3208235786 creator A5020522482 @default.
- W3208235786 creator A5031927335 @default.
- W3208235786 creator A5048305709 @default.
- W3208235786 creator A5048467933 @default.
- W3208235786 creator A5072357069 @default.
- W3208235786 creator A5077465464 @default.
- W3208235786 creator A5083637324 @default.
- W3208235786 date "2021-10-26" @default.
- W3208235786 modified "2023-10-01" @default.
- W3208235786 title "Assessing Nitrate Contamination Risks in Groundwater: A Machine Learning Approach" @default.
- W3208235786 cites W174600456 @default.
- W3208235786 cites W1843405797 @default.
- W3208235786 cites W1965920041 @default.
- W3208235786 cites W1966573127 @default.
- W3208235786 cites W1967399023 @default.
- W3208235786 cites W1977085977 @default.
- W3208235786 cites W1977685235 @default.
- W3208235786 cites W1981775056 @default.
- W3208235786 cites W1992146725 @default.
- W3208235786 cites W1995539799 @default.
- W3208235786 cites W1997159081 @default.
- W3208235786 cites W2003213256 @default.
- W3208235786 cites W2004671607 @default.
- W3208235786 cites W2013341039 @default.
- W3208235786 cites W2013558387 @default.
- W3208235786 cites W2013990421 @default.
- W3208235786 cites W2022944615 @default.
- W3208235786 cites W2025051644 @default.
- W3208235786 cites W2025514610 @default.
- W3208235786 cites W2041877243 @default.
- W3208235786 cites W2047496822 @default.
- W3208235786 cites W2050731588 @default.
- W3208235786 cites W2051718657 @default.
- W3208235786 cites W2052553511 @default.
- W3208235786 cites W2053121072 @default.
- W3208235786 cites W2057915933 @default.
- W3208235786 cites W2064508963 @default.
- W3208235786 cites W2066904581 @default.
- W3208235786 cites W2089638201 @default.
- W3208235786 cites W2095047831 @default.
- W3208235786 cites W2100972528 @default.
- W3208235786 cites W2112315008 @default.
- W3208235786 cites W2141143468 @default.
- W3208235786 cites W2148300238 @default.
- W3208235786 cites W2167533190 @default.
- W3208235786 cites W2278830514 @default.
- W3208235786 cites W2294472071 @default.
- W3208235786 cites W2461675021 @default.
- W3208235786 cites W2515075308 @default.
- W3208235786 cites W2560837060 @default.
- W3208235786 cites W2578002241 @default.
- W3208235786 cites W2605739831 @default.
- W3208235786 cites W2607283161 @default.
- W3208235786 cites W2618981047 @default.
- W3208235786 cites W2741517055 @default.
- W3208235786 cites W2743543156 @default.
- W3208235786 cites W2744785944 @default.
- W3208235786 cites W2758156000 @default.
- W3208235786 cites W2763383283 @default.
- W3208235786 cites W2772274890 @default.
- W3208235786 cites W2792622668 @default.
- W3208235786 cites W2794139927 @default.
- W3208235786 cites W2794405349 @default.
- W3208235786 cites W2799644335 @default.
- W3208235786 cites W2802958163 @default.
- W3208235786 cites W2808905074 @default.
- W3208235786 cites W2849998820 @default.
- W3208235786 cites W2885770726 @default.
- W3208235786 cites W2887073824 @default.
- W3208235786 cites W2894463230 @default.
- W3208235786 cites W2922051790 @default.
- W3208235786 cites W2950469931 @default.
- W3208235786 cites W2957135778 @default.
- W3208235786 cites W2981915020 @default.
- W3208235786 cites W2989167188 @default.
- W3208235786 cites W2991046403 @default.
- W3208235786 cites W3009636339 @default.
- W3208235786 cites W3028274112 @default.
- W3208235786 cites W3119168033 @default.
- W3208235786 cites W3128974365 @default.
- W3208235786 cites W3130431610 @default.
- W3208235786 cites W3138014297 @default.
- W3208235786 cites W3150623028 @default.
- W3208235786 cites W3162668532 @default.
- W3208235786 cites W3163009435 @default.
- W3208235786 cites W3163336139 @default.
- W3208235786 cites W3167183810 @default.
- W3208235786 cites W3198842705 @default.
- W3208235786 cites W3199090101 @default.
- W3208235786 cites W3199706904 @default.
- W3208235786 cites W3200250588 @default.
- W3208235786 cites W3200888120 @default.
- W3208235786 cites W370795312 @default.
- W3208235786 cites W4239510810 @default.
- W3208235786 doi "https://doi.org/10.3390/app112110034" @default.
- W3208235786 hasPublicationYear "2021" @default.