Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208240004> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3208240004 endingPage "375" @default.
- W3208240004 startingPage "362" @default.
- W3208240004 abstract "In order to forecast stock prices based on economic indicators, many studies have been conducted using well-known statistical methods. Meanwhile, since ~2010 as the power of computers improved, new methods of machine learning began to be used. It would be interesting to know how those algorithms using a variety of mathematical and statistical methods, are able to predict the stock market. The purpose of this article is to model the monthly price of the S&P 500 index based on U.S. economic indicators using statistical, machine learning, deep learning approaches and finally compare metrics of those models. After the selection of indicators according to the data visualization, multicollinearity tests, statistical significance tests, 3 out of 27 indicators remained. The main finding of the research is that the authors improved the baseline statistical linear regression model by 19 percent using a ML Random Forest algorithm. In this way, model achieved accuracy 97.68% of prediction S&P 500 index." @default.
- W3208240004 created "2021-11-08" @default.
- W3208240004 creator A5024751031 @default.
- W3208240004 creator A5058838249 @default.
- W3208240004 creator A5067243334 @default.
- W3208240004 creator A5083884628 @default.
- W3208240004 date "2021-10-28" @default.
- W3208240004 modified "2023-10-17" @default.
- W3208240004 title "Modelling of S&P 500 Index Price Based on U.S. Economic Indicators: Machine Learning Approach" @default.
- W3208240004 cites W2165100677 @default.
- W3208240004 cites W2792424319 @default.
- W3208240004 doi "https://doi.org/10.5755/j01.ee.32.4.27985" @default.
- W3208240004 hasPublicationYear "2021" @default.
- W3208240004 type Work @default.
- W3208240004 sameAs 3208240004 @default.
- W3208240004 citedByCount "1" @default.
- W3208240004 countsByYear W32082400042022 @default.
- W3208240004 crossrefType "journal-article" @default.
- W3208240004 hasAuthorship W3208240004A5024751031 @default.
- W3208240004 hasAuthorship W3208240004A5058838249 @default.
- W3208240004 hasAuthorship W3208240004A5067243334 @default.
- W3208240004 hasAuthorship W3208240004A5083884628 @default.
- W3208240004 hasBestOaLocation W32082400041 @default.
- W3208240004 hasConcept C105795698 @default.
- W3208240004 hasConcept C114289077 @default.
- W3208240004 hasConcept C119857082 @default.
- W3208240004 hasConcept C136764020 @default.
- W3208240004 hasConcept C139719470 @default.
- W3208240004 hasConcept C148483581 @default.
- W3208240004 hasConcept C149782125 @default.
- W3208240004 hasConcept C151730666 @default.
- W3208240004 hasConcept C152877465 @default.
- W3208240004 hasConcept C154945302 @default.
- W3208240004 hasConcept C162324750 @default.
- W3208240004 hasConcept C163068380 @default.
- W3208240004 hasConcept C169258074 @default.
- W3208240004 hasConcept C189285262 @default.
- W3208240004 hasConcept C202353208 @default.
- W3208240004 hasConcept C27591710 @default.
- W3208240004 hasConcept C2777382242 @default.
- W3208240004 hasConcept C2780299701 @default.
- W3208240004 hasConcept C2780762169 @default.
- W3208240004 hasConcept C2982736386 @default.
- W3208240004 hasConcept C33923547 @default.
- W3208240004 hasConcept C41008148 @default.
- W3208240004 hasConcept C48921125 @default.
- W3208240004 hasConcept C86803240 @default.
- W3208240004 hasConcept C88389905 @default.
- W3208240004 hasConcept C93959086 @default.
- W3208240004 hasConceptScore W3208240004C105795698 @default.
- W3208240004 hasConceptScore W3208240004C114289077 @default.
- W3208240004 hasConceptScore W3208240004C119857082 @default.
- W3208240004 hasConceptScore W3208240004C136764020 @default.
- W3208240004 hasConceptScore W3208240004C139719470 @default.
- W3208240004 hasConceptScore W3208240004C148483581 @default.
- W3208240004 hasConceptScore W3208240004C149782125 @default.
- W3208240004 hasConceptScore W3208240004C151730666 @default.
- W3208240004 hasConceptScore W3208240004C152877465 @default.
- W3208240004 hasConceptScore W3208240004C154945302 @default.
- W3208240004 hasConceptScore W3208240004C162324750 @default.
- W3208240004 hasConceptScore W3208240004C163068380 @default.
- W3208240004 hasConceptScore W3208240004C169258074 @default.
- W3208240004 hasConceptScore W3208240004C189285262 @default.
- W3208240004 hasConceptScore W3208240004C202353208 @default.
- W3208240004 hasConceptScore W3208240004C27591710 @default.
- W3208240004 hasConceptScore W3208240004C2777382242 @default.
- W3208240004 hasConceptScore W3208240004C2780299701 @default.
- W3208240004 hasConceptScore W3208240004C2780762169 @default.
- W3208240004 hasConceptScore W3208240004C2982736386 @default.
- W3208240004 hasConceptScore W3208240004C33923547 @default.
- W3208240004 hasConceptScore W3208240004C41008148 @default.
- W3208240004 hasConceptScore W3208240004C48921125 @default.
- W3208240004 hasConceptScore W3208240004C86803240 @default.
- W3208240004 hasConceptScore W3208240004C88389905 @default.
- W3208240004 hasConceptScore W3208240004C93959086 @default.
- W3208240004 hasIssue "4" @default.
- W3208240004 hasLocation W32082400041 @default.
- W3208240004 hasOpenAccess W3208240004 @default.
- W3208240004 hasPrimaryLocation W32082400041 @default.
- W3208240004 hasRelatedWork W2135793930 @default.
- W3208240004 hasRelatedWork W2471082825 @default.
- W3208240004 hasRelatedWork W2973799232 @default.
- W3208240004 hasRelatedWork W3174196512 @default.
- W3208240004 hasRelatedWork W3188410990 @default.
- W3208240004 hasRelatedWork W3208240004 @default.
- W3208240004 hasRelatedWork W4212852473 @default.
- W3208240004 hasRelatedWork W4225360065 @default.
- W3208240004 hasRelatedWork W4293525103 @default.
- W3208240004 hasRelatedWork W4380592025 @default.
- W3208240004 hasVolume "32" @default.
- W3208240004 isParatext "false" @default.
- W3208240004 isRetracted "false" @default.
- W3208240004 magId "3208240004" @default.
- W3208240004 workType "article" @default.