Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208241455> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3208241455 abstract "Various space-time adaptive signal processing (STAP) systems allow a block representation of input signals and their covariance matrices. This is a convenient way to describe possible specifics of space and time parts of a STAP system and take this a priori information into account in subsequent signal processing. Such a block representation allows synthesizing multidimensional (quasi-)whitening and (quasi-)inverse filters, including their lattice variants. This second part of the series of articles about lattice filtration theory deals with two- and multidimensional lattice filters and continues the first part that focuses on the one-dimensional filters. For synthesizing the two-dimensional lattice filters, we derive a Generalized Block Levinson Algorithm (GBLA) and consecutively a Generalized Block Levinson Factorization (GBLF). We demonstrate that both the Generalized Levinson Algorithm and Factorization presented in the first paper are particular cases of the GBLA and the GBLF, respectively. A fundamental relation between lattice filters of different dimensionalities is revealed, which is that all lattice filters of a lower dimensionality (starting from one-dimensional) are nested in the filters of a higher dimensionality. We describe a nesting of one-dimensional lattice filters in two-dimensional ones, which exemplifies the overall nesting principle that keeps same for any dimensionality. In virtue of this fundamental relation between multi- and one-dimensional lattice filters, we propose to synthesize the former via the synthesis of the latter. Unlike the multi-dimensional lattice filters, the one-dimensional ones have a uniform structure and are significantly simpl" @default.
- W3208241455 created "2021-11-08" @default.
- W3208241455 creator A5034625802 @default.
- W3208241455 creator A5047090948 @default.
- W3208241455 creator A5062737768 @default.
- W3208241455 creator A5062811051 @default.
- W3208241455 creator A5082341637 @default.
- W3208241455 date "2021-01-01" @default.
- W3208241455 modified "2023-09-27" @default.
- W3208241455 title "Lattice filtration theory. Part II. Two-dimensional and multidimensional lattice filters" @default.
- W3208241455 doi "https://doi.org/10.1615/telecomradeng.2021040594" @default.
- W3208241455 hasPublicationYear "2021" @default.
- W3208241455 type Work @default.
- W3208241455 sameAs 3208241455 @default.
- W3208241455 citedByCount "1" @default.
- W3208241455 countsByYear W32082414552022 @default.
- W3208241455 crossrefType "journal-article" @default.
- W3208241455 hasAuthorship W3208241455A5034625802 @default.
- W3208241455 hasAuthorship W3208241455A5047090948 @default.
- W3208241455 hasAuthorship W3208241455A5062737768 @default.
- W3208241455 hasAuthorship W3208241455A5062811051 @default.
- W3208241455 hasAuthorship W3208241455A5082341637 @default.
- W3208241455 hasConcept C102248274 @default.
- W3208241455 hasConcept C104267543 @default.
- W3208241455 hasConcept C105795698 @default.
- W3208241455 hasConcept C111030470 @default.
- W3208241455 hasConcept C111104540 @default.
- W3208241455 hasConcept C11413529 @default.
- W3208241455 hasConcept C121332964 @default.
- W3208241455 hasConcept C134306372 @default.
- W3208241455 hasConcept C158457486 @default.
- W3208241455 hasConcept C187834632 @default.
- W3208241455 hasConcept C202444582 @default.
- W3208241455 hasConcept C207114421 @default.
- W3208241455 hasConcept C24890656 @default.
- W3208241455 hasConcept C2781204021 @default.
- W3208241455 hasConcept C33923547 @default.
- W3208241455 hasConcept C41008148 @default.
- W3208241455 hasConcept C62520636 @default.
- W3208241455 hasConcept C84462506 @default.
- W3208241455 hasConcept C89957378 @default.
- W3208241455 hasConcept C9390403 @default.
- W3208241455 hasConceptScore W3208241455C102248274 @default.
- W3208241455 hasConceptScore W3208241455C104267543 @default.
- W3208241455 hasConceptScore W3208241455C105795698 @default.
- W3208241455 hasConceptScore W3208241455C111030470 @default.
- W3208241455 hasConceptScore W3208241455C111104540 @default.
- W3208241455 hasConceptScore W3208241455C11413529 @default.
- W3208241455 hasConceptScore W3208241455C121332964 @default.
- W3208241455 hasConceptScore W3208241455C134306372 @default.
- W3208241455 hasConceptScore W3208241455C158457486 @default.
- W3208241455 hasConceptScore W3208241455C187834632 @default.
- W3208241455 hasConceptScore W3208241455C202444582 @default.
- W3208241455 hasConceptScore W3208241455C207114421 @default.
- W3208241455 hasConceptScore W3208241455C24890656 @default.
- W3208241455 hasConceptScore W3208241455C2781204021 @default.
- W3208241455 hasConceptScore W3208241455C33923547 @default.
- W3208241455 hasConceptScore W3208241455C41008148 @default.
- W3208241455 hasConceptScore W3208241455C62520636 @default.
- W3208241455 hasConceptScore W3208241455C84462506 @default.
- W3208241455 hasConceptScore W3208241455C89957378 @default.
- W3208241455 hasConceptScore W3208241455C9390403 @default.
- W3208241455 hasLocation W32082414551 @default.
- W3208241455 hasOpenAccess W3208241455 @default.
- W3208241455 hasPrimaryLocation W32082414551 @default.
- W3208241455 hasRelatedWork W1893277061 @default.
- W3208241455 hasRelatedWork W1976504964 @default.
- W3208241455 hasRelatedWork W2057197540 @default.
- W3208241455 hasRelatedWork W2104517492 @default.
- W3208241455 hasRelatedWork W2107423125 @default.
- W3208241455 hasRelatedWork W2115882010 @default.
- W3208241455 hasRelatedWork W2151699645 @default.
- W3208241455 hasRelatedWork W2151930579 @default.
- W3208241455 hasRelatedWork W2164196598 @default.
- W3208241455 hasRelatedWork W2534191123 @default.
- W3208241455 isParatext "false" @default.
- W3208241455 isRetracted "false" @default.
- W3208241455 magId "3208241455" @default.
- W3208241455 workType "article" @default.