Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208249701> ?p ?o ?g. }
- W3208249701 endingPage "59" @default.
- W3208249701 startingPage "39" @default.
- W3208249701 abstract "Summary Selection of a safe mud weight is crucial in drilling operations to reduce costly wellbore-instability problems. Advanced physics models and their analytical solutions for mud-weight-window computation are available but still demanding in terms of central-processing-unit (CPU) time. This paper presents an artificial-intelligence (AI) solution for predicting time-dependent safe mud-weight windows and very refined polar charts in real time. The AI agents are trained and tested on data generated from a time-dependent coupled analytical solution (poroelastic) because numerical solutions are prohibitively slow. Different AI techniques, including linear regression, decision tree, random forest, extra trees, adaptive neuro fuzzy inference system (ANFIS), and neural networks are evaluated to select the most suitable one. The results show that neural networks have the best performances and are capable of predicting time-dependent mud-weight windows and polar charts as accurately as the analytical solution, with 1/1,000 of the computer time needed, making them very applicable to real-time drilling operations. The trained neural networks achieve a mean squared error (MSE) of 0.0352 and a coefficient of determination (R2) of 0.9984 for collapse mud weights, and an MSE of 0.0072 and an R2 of 0.9998 for fracturing mud weights on test data sets. The neural networks are statistically guaranteed to predict mud weights that are within 5% and 10% of the analytical solutions with probability up to 0.986 and 0.997, respectively, for collapse mud weights, and up to 0.9992 and 0.9998, respectively, for fracturing mud weights. Their time performances are significantly faster and less demanding in computing capacity than the analytical solution, consistently showing three-orders-of-magnitude speedups in computational speed tests. The AI solution is integrated into a deployed wellbore-stability analyzer, which is used to demonstrate the AI’s performances and advantages through three case studies." @default.
- W3208249701 created "2021-11-08" @default.
- W3208249701 creator A5028859068 @default.
- W3208249701 creator A5037744426 @default.
- W3208249701 creator A5045919903 @default.
- W3208249701 creator A5067074454 @default.
- W3208249701 creator A5089730327 @default.
- W3208249701 date "2021-10-26" @default.
- W3208249701 modified "2023-10-18" @default.
- W3208249701 title "Application of Artificial Intelligence To Predict Time-Dependent Mud-Weight Windows in Real Time" @default.
- W3208249701 cites W1750826701 @default.
- W3208249701 cites W1976351884 @default.
- W3208249701 cites W1997986061 @default.
- W3208249701 cites W2005878066 @default.
- W3208249701 cites W2012037220 @default.
- W3208249701 cites W2012555316 @default.
- W3208249701 cites W2013378431 @default.
- W3208249701 cites W2055072688 @default.
- W3208249701 cites W2059121759 @default.
- W3208249701 cites W2067971887 @default.
- W3208249701 cites W2087153757 @default.
- W3208249701 cites W2098006655 @default.
- W3208249701 cites W2137983211 @default.
- W3208249701 cites W2152820512 @default.
- W3208249701 cites W2157249677 @default.
- W3208249701 cites W2596650577 @default.
- W3208249701 cites W2783567694 @default.
- W3208249701 cites W2787990997 @default.
- W3208249701 cites W2791934906 @default.
- W3208249701 cites W2803505472 @default.
- W3208249701 cites W2808728586 @default.
- W3208249701 cites W2810145833 @default.
- W3208249701 cites W2883516597 @default.
- W3208249701 cites W2888316933 @default.
- W3208249701 cites W2913096022 @default.
- W3208249701 cites W2919115771 @default.
- W3208249701 cites W2922150836 @default.
- W3208249701 cites W2947941378 @default.
- W3208249701 cites W2973365671 @default.
- W3208249701 cites W3000027239 @default.
- W3208249701 cites W3000513683 @default.
- W3208249701 cites W3007103096 @default.
- W3208249701 cites W3094929171 @default.
- W3208249701 cites W3112619285 @default.
- W3208249701 cites W3136700045 @default.
- W3208249701 cites W363451271 @default.
- W3208249701 cites W4230704549 @default.
- W3208249701 cites W4236717948 @default.
- W3208249701 cites W4242957860 @default.
- W3208249701 doi "https://doi.org/10.2118/206748-pa" @default.
- W3208249701 hasPublicationYear "2021" @default.
- W3208249701 type Work @default.
- W3208249701 sameAs 3208249701 @default.
- W3208249701 citedByCount "3" @default.
- W3208249701 countsByYear W32082497012022 @default.
- W3208249701 countsByYear W32082497012023 @default.
- W3208249701 crossrefType "journal-article" @default.
- W3208249701 hasAuthorship W3208249701A5028859068 @default.
- W3208249701 hasAuthorship W3208249701A5037744426 @default.
- W3208249701 hasAuthorship W3208249701A5045919903 @default.
- W3208249701 hasAuthorship W3208249701A5067074454 @default.
- W3208249701 hasAuthorship W3208249701A5089730327 @default.
- W3208249701 hasConcept C105795698 @default.
- W3208249701 hasConcept C11413529 @default.
- W3208249701 hasConcept C119857082 @default.
- W3208249701 hasConcept C124101348 @default.
- W3208249701 hasConcept C128990827 @default.
- W3208249701 hasConcept C139945424 @default.
- W3208249701 hasConcept C154945302 @default.
- W3208249701 hasConcept C186108316 @default.
- W3208249701 hasConcept C195975749 @default.
- W3208249701 hasConcept C33923547 @default.
- W3208249701 hasConcept C41008148 @default.
- W3208249701 hasConcept C50644808 @default.
- W3208249701 hasConcept C58166 @default.
- W3208249701 hasConceptScore W3208249701C105795698 @default.
- W3208249701 hasConceptScore W3208249701C11413529 @default.
- W3208249701 hasConceptScore W3208249701C119857082 @default.
- W3208249701 hasConceptScore W3208249701C124101348 @default.
- W3208249701 hasConceptScore W3208249701C128990827 @default.
- W3208249701 hasConceptScore W3208249701C139945424 @default.
- W3208249701 hasConceptScore W3208249701C154945302 @default.
- W3208249701 hasConceptScore W3208249701C186108316 @default.
- W3208249701 hasConceptScore W3208249701C195975749 @default.
- W3208249701 hasConceptScore W3208249701C33923547 @default.
- W3208249701 hasConceptScore W3208249701C41008148 @default.
- W3208249701 hasConceptScore W3208249701C50644808 @default.
- W3208249701 hasConceptScore W3208249701C58166 @default.
- W3208249701 hasIssue "01" @default.
- W3208249701 hasLocation W32082497011 @default.
- W3208249701 hasOpenAccess W3208249701 @default.
- W3208249701 hasPrimaryLocation W32082497011 @default.
- W3208249701 hasRelatedWork W1783186681 @default.
- W3208249701 hasRelatedWork W2006360470 @default.
- W3208249701 hasRelatedWork W2088420466 @default.
- W3208249701 hasRelatedWork W2754332904 @default.
- W3208249701 hasRelatedWork W2756725570 @default.
- W3208249701 hasRelatedWork W2941983315 @default.