Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208254232> ?p ?o ?g. }
- W3208254232 endingPage "11909" @default.
- W3208254232 startingPage "11909" @default.
- W3208254232 abstract "The trend towards personalized healthcare has led to an increase in applying deep learning techniques to improve healthcare service quality and sustainability. With the increasing number of patients with multiple comorbidities, they need comprehensive care services, where comprehensive care is a synonym for complete patient care to respond to a patient’s physical, emotional, social, economic, and spiritual needs, and, as such, an efficient prediction system for comprehensive care suggestions could help physicians and healthcare providers in making clinical judgement. The experiment dataset contained a total of 2.9 million electrical medical records (EMRs) from 250 thousand hospitalized patients collected retrospectively from a first-tier medical center in Taiwan, where the EMRs were de-identified and anonymized and where 949 cases had received comprehensive care. Recurrent neural networks (RNNs) are designed for analyzing time-series data but are still lacking in studying predicting personalized healthcare. Furthermore, in most cases, the collected evaluation data are imbalanced with a small portion of positive cases. This study examined the impact of imbalanced data in model training and suggested an effective approach to handle such a situation. To address the above-mentioned research issue, this study analyzed the care need in the different patient groupings, proposed a personalized care suggestion system by applying RNN models, and developed an efficient model training scheme for building AI-assisted prediction models. This study observed several findings: (1) the data resampling schemes could mitigate the impact of imbalanced data on model training, and the under-sampling scheme achieved the best performance with an ACC of 99.80%, a PPV of 70.18%, an NPV of 99.87%, a recall of 82.91%, and an F1 score of 0.7602, while the model trained with the original data had a very low PPV of 6.42% and a low F1 score of 0.1116; (2) patient clustering with multi-classier could predict comprehensive care needs efficiently with an ACC of 99.87%, a PPV of 77.90%, an NPV of 99.90%, a recall of 92.19%, and an F1 score of 0.8404; (3) the proposed long short-term memory (LSTM) prediction model achieved the best overall performance with an ACC of 99.80%, a PPV of 70.18%, an NPV of 99.87%, a recall of 82.91%, and an F1 score of 0.7602." @default.
- W3208254232 created "2021-11-08" @default.
- W3208254232 creator A5005436809 @default.
- W3208254232 creator A5030387958 @default.
- W3208254232 creator A5032661130 @default.
- W3208254232 creator A5066946316 @default.
- W3208254232 creator A5083343109 @default.
- W3208254232 date "2021-10-28" @default.
- W3208254232 modified "2023-10-14" @default.
- W3208254232 title "Analyzing Groups of Inpatients’ Healthcare Needs to Improve Service Quality and Sustainability" @default.
- W3208254232 cites W2116702209 @default.
- W3208254232 cites W2148143831 @default.
- W3208254232 cites W2148850812 @default.
- W3208254232 cites W2336747687 @default.
- W3208254232 cites W2512648533 @default.
- W3208254232 cites W2572770765 @default.
- W3208254232 cites W2765421612 @default.
- W3208254232 cites W2796376642 @default.
- W3208254232 cites W2897821359 @default.
- W3208254232 cites W2921339345 @default.
- W3208254232 cites W2967406056 @default.
- W3208254232 cites W2972544275 @default.
- W3208254232 cites W3011403448 @default.
- W3208254232 cites W3096565539 @default.
- W3208254232 cites W3096854301 @default.
- W3208254232 cites W3130661843 @default.
- W3208254232 cites W3132749456 @default.
- W3208254232 cites W3137649815 @default.
- W3208254232 cites W3138985726 @default.
- W3208254232 cites W3140854437 @default.
- W3208254232 cites W3159779795 @default.
- W3208254232 cites W3163414542 @default.
- W3208254232 cites W3164461680 @default.
- W3208254232 cites W3165528825 @default.
- W3208254232 cites W3168156287 @default.
- W3208254232 cites W3190751985 @default.
- W3208254232 doi "https://doi.org/10.3390/su132111909" @default.
- W3208254232 hasPublicationYear "2021" @default.
- W3208254232 type Work @default.
- W3208254232 sameAs 3208254232 @default.
- W3208254232 citedByCount "2" @default.
- W3208254232 countsByYear W32082542322021 @default.
- W3208254232 countsByYear W32082542322023 @default.
- W3208254232 crossrefType "journal-article" @default.
- W3208254232 hasAuthorship W3208254232A5005436809 @default.
- W3208254232 hasAuthorship W3208254232A5030387958 @default.
- W3208254232 hasAuthorship W3208254232A5032661130 @default.
- W3208254232 hasAuthorship W3208254232A5066946316 @default.
- W3208254232 hasAuthorship W3208254232A5083343109 @default.
- W3208254232 hasBestOaLocation W32082542321 @default.
- W3208254232 hasConcept C111472728 @default.
- W3208254232 hasConcept C126838900 @default.
- W3208254232 hasConcept C138885662 @default.
- W3208254232 hasConcept C144133560 @default.
- W3208254232 hasConcept C154945302 @default.
- W3208254232 hasConcept C160735492 @default.
- W3208254232 hasConcept C162324750 @default.
- W3208254232 hasConcept C162853370 @default.
- W3208254232 hasConcept C18903297 @default.
- W3208254232 hasConcept C195910791 @default.
- W3208254232 hasConcept C2779530757 @default.
- W3208254232 hasConcept C2780378061 @default.
- W3208254232 hasConcept C41008148 @default.
- W3208254232 hasConcept C50522688 @default.
- W3208254232 hasConcept C66204764 @default.
- W3208254232 hasConcept C71924100 @default.
- W3208254232 hasConcept C86803240 @default.
- W3208254232 hasConceptScore W3208254232C111472728 @default.
- W3208254232 hasConceptScore W3208254232C126838900 @default.
- W3208254232 hasConceptScore W3208254232C138885662 @default.
- W3208254232 hasConceptScore W3208254232C144133560 @default.
- W3208254232 hasConceptScore W3208254232C154945302 @default.
- W3208254232 hasConceptScore W3208254232C160735492 @default.
- W3208254232 hasConceptScore W3208254232C162324750 @default.
- W3208254232 hasConceptScore W3208254232C162853370 @default.
- W3208254232 hasConceptScore W3208254232C18903297 @default.
- W3208254232 hasConceptScore W3208254232C195910791 @default.
- W3208254232 hasConceptScore W3208254232C2779530757 @default.
- W3208254232 hasConceptScore W3208254232C2780378061 @default.
- W3208254232 hasConceptScore W3208254232C41008148 @default.
- W3208254232 hasConceptScore W3208254232C50522688 @default.
- W3208254232 hasConceptScore W3208254232C66204764 @default.
- W3208254232 hasConceptScore W3208254232C71924100 @default.
- W3208254232 hasConceptScore W3208254232C86803240 @default.
- W3208254232 hasFunder F4320327359 @default.
- W3208254232 hasIssue "21" @default.
- W3208254232 hasLocation W32082542321 @default.
- W3208254232 hasLocation W32082542322 @default.
- W3208254232 hasOpenAccess W3208254232 @default.
- W3208254232 hasPrimaryLocation W32082542321 @default.
- W3208254232 hasRelatedWork W2102338924 @default.
- W3208254232 hasRelatedWork W2116911522 @default.
- W3208254232 hasRelatedWork W2499022113 @default.
- W3208254232 hasRelatedWork W2603433392 @default.
- W3208254232 hasRelatedWork W2748952813 @default.
- W3208254232 hasRelatedWork W2899084033 @default.
- W3208254232 hasRelatedWork W3034803382 @default.
- W3208254232 hasRelatedWork W35784695 @default.