Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208260574> ?p ?o ?g. }
- W3208260574 endingPage "9987" @default.
- W3208260574 startingPage "9987" @default.
- W3208260574 abstract "The purpose of seismic data processing in nuclear explosion monitoring is to accurately and reliably detect seismic or explosion events from complex ambient noises. Accurate detection and identification of seismic phases are of great significance to the detection and parameter estimation of seismic events. In seismic phase identification, discriminating between noise signals and real seismic signals is essential. Accurate identification of noise signals helps reduce false detections, improves the accuracy of automatic bulletins, and relieves the workload of analysts. At the same time, in seismic exploration, the prime objective in data processing is also to enhance the signal and suppress the noises. In this study, we combined a generative adversarial network (GAN) with a long short-term memory network (LSTM) to discriminate between noise and phases in seismic waveforms recorded by the International Monitoring System (IMS) array MKAR. First, using the beamforming data of the array as the input, we obtained the signal features of seismic phases through the learning of the GAN discriminator network. Then, we input these features and trained the joint network on mixed seismic phase and noise data, and successfully classified seismic phases and noise signals with a recall of 95.28% and 97.64%, respectively. Based on this model, we established a real-time data processing method, then validated the effectiveness of this method with real 2019 data of MKAR. We also verified whether improved noise signal identification improves the quality of phase association and event detection." @default.
- W3208260574 created "2021-11-08" @default.
- W3208260574 creator A5010263901 @default.
- W3208260574 creator A5018892762 @default.
- W3208260574 creator A5036811283 @default.
- W3208260574 creator A5037332893 @default.
- W3208260574 creator A5071615222 @default.
- W3208260574 creator A5076566366 @default.
- W3208260574 creator A5085099470 @default.
- W3208260574 creator A5085415901 @default.
- W3208260574 creator A5086486967 @default.
- W3208260574 date "2021-10-25" @default.
- W3208260574 modified "2023-09-25" @default.
- W3208260574 title "GAN-LSTM Joint Network Applied to Seismic Array Noise Signal Recognition" @default.
- W3208260574 cites W2024551209 @default.
- W3208260574 cites W2142635246 @default.
- W3208260574 cites W2171573622 @default.
- W3208260574 cites W2398851514 @default.
- W3208260574 cites W2528961483 @default.
- W3208260574 cites W2605668928 @default.
- W3208260574 cites W2762410434 @default.
- W3208260574 cites W2781891981 @default.
- W3208260574 cites W2794417179 @default.
- W3208260574 cites W2794436210 @default.
- W3208260574 cites W2798828763 @default.
- W3208260574 cites W2799565130 @default.
- W3208260574 cites W2895546528 @default.
- W3208260574 cites W2919115771 @default.
- W3208260574 cites W3029518658 @default.
- W3208260574 cites W3092070409 @default.
- W3208260574 cites W3102813443 @default.
- W3208260574 cites W4205729516 @default.
- W3208260574 cites W4247142410 @default.
- W3208260574 doi "https://doi.org/10.3390/app11219987" @default.
- W3208260574 hasPublicationYear "2021" @default.
- W3208260574 type Work @default.
- W3208260574 sameAs 3208260574 @default.
- W3208260574 citedByCount "1" @default.
- W3208260574 countsByYear W32082605742023 @default.
- W3208260574 crossrefType "journal-article" @default.
- W3208260574 hasAuthorship W3208260574A5010263901 @default.
- W3208260574 hasAuthorship W3208260574A5018892762 @default.
- W3208260574 hasAuthorship W3208260574A5036811283 @default.
- W3208260574 hasAuthorship W3208260574A5037332893 @default.
- W3208260574 hasAuthorship W3208260574A5071615222 @default.
- W3208260574 hasAuthorship W3208260574A5076566366 @default.
- W3208260574 hasAuthorship W3208260574A5085099470 @default.
- W3208260574 hasAuthorship W3208260574A5085415901 @default.
- W3208260574 hasAuthorship W3208260574A5086486967 @default.
- W3208260574 hasBestOaLocation W32082605741 @default.
- W3208260574 hasConcept C115961682 @default.
- W3208260574 hasConcept C116834253 @default.
- W3208260574 hasConcept C127313418 @default.
- W3208260574 hasConcept C127413603 @default.
- W3208260574 hasConcept C153180895 @default.
- W3208260574 hasConcept C154945302 @default.
- W3208260574 hasConcept C165205528 @default.
- W3208260574 hasConcept C170154142 @default.
- W3208260574 hasConcept C18555067 @default.
- W3208260574 hasConcept C199360897 @default.
- W3208260574 hasConcept C2776845669 @default.
- W3208260574 hasConcept C2779803651 @default.
- W3208260574 hasConcept C2779843651 @default.
- W3208260574 hasConcept C28490314 @default.
- W3208260574 hasConcept C30947920 @default.
- W3208260574 hasConcept C31972630 @default.
- W3208260574 hasConcept C41008148 @default.
- W3208260574 hasConcept C54197355 @default.
- W3208260574 hasConcept C59822182 @default.
- W3208260574 hasConcept C76155785 @default.
- W3208260574 hasConcept C79403827 @default.
- W3208260574 hasConcept C86803240 @default.
- W3208260574 hasConcept C94915269 @default.
- W3208260574 hasConcept C99498987 @default.
- W3208260574 hasConceptScore W3208260574C115961682 @default.
- W3208260574 hasConceptScore W3208260574C116834253 @default.
- W3208260574 hasConceptScore W3208260574C127313418 @default.
- W3208260574 hasConceptScore W3208260574C127413603 @default.
- W3208260574 hasConceptScore W3208260574C153180895 @default.
- W3208260574 hasConceptScore W3208260574C154945302 @default.
- W3208260574 hasConceptScore W3208260574C165205528 @default.
- W3208260574 hasConceptScore W3208260574C170154142 @default.
- W3208260574 hasConceptScore W3208260574C18555067 @default.
- W3208260574 hasConceptScore W3208260574C199360897 @default.
- W3208260574 hasConceptScore W3208260574C2776845669 @default.
- W3208260574 hasConceptScore W3208260574C2779803651 @default.
- W3208260574 hasConceptScore W3208260574C2779843651 @default.
- W3208260574 hasConceptScore W3208260574C28490314 @default.
- W3208260574 hasConceptScore W3208260574C30947920 @default.
- W3208260574 hasConceptScore W3208260574C31972630 @default.
- W3208260574 hasConceptScore W3208260574C41008148 @default.
- W3208260574 hasConceptScore W3208260574C54197355 @default.
- W3208260574 hasConceptScore W3208260574C59822182 @default.
- W3208260574 hasConceptScore W3208260574C76155785 @default.
- W3208260574 hasConceptScore W3208260574C79403827 @default.
- W3208260574 hasConceptScore W3208260574C86803240 @default.
- W3208260574 hasConceptScore W3208260574C94915269 @default.
- W3208260574 hasConceptScore W3208260574C99498987 @default.