Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208260947> ?p ?o ?g. }
- W3208260947 abstract "Conformational sampling of biomolecules using molecular dynamics simulations often produces large amount of high dimensional data that makes it difficult to interpret using conventional analysis techniques. Dimensionality reduction methods are thus required to extract useful and relevant information. Here we devise a machine learning method, Gaussian mixture variational autoencoder (GMVAE) that can simultaneously perform dimensionality reduction and clustering of biomolecular conformations in an unsupervised way. We show that GMVAE can learn a reduced representation of the free energy landscape of protein folding with highly separated clusters that correspond to the metastable states during folding. Since GMVAE uses a mixture of Gaussians as the prior, it can directly acknowledge the multi-basin nature of protein folding free-energy landscape. To make the model end-to-end differentialble, we use a Gumbel-softmax distribution. We test the model on three long-timescale protein folding trajectories and show that GMVAE embedding resembles the folding funnel with folded states down the funnel and unfolded states outer in the funnel path. Additionally, we show that the latent space of GMVAE can be used for kinetic analysis and Markov state models built on this embedding produce folding and unfolding timescales that are in close agreement with other rigorous dynamical embeddings such as time independent component analysis (TICA)." @default.
- W3208260947 created "2021-11-08" @default.
- W3208260947 creator A5037192273 @default.
- W3208260947 creator A5043965319 @default.
- W3208260947 creator A5049807318 @default.
- W3208260947 creator A5079782789 @default.
- W3208260947 date "2021-11-16" @default.
- W3208260947 modified "2023-10-10" @default.
- W3208260947 title "Variational embedding of protein folding simulations using Gaussian mixture variational autoencoders" @default.
- W3208260947 cites W1973897761 @default.
- W3208260947 cites W1980782498 @default.
- W3208260947 cites W2005768448 @default.
- W3208260947 cites W2017776794 @default.
- W3208260947 cites W2028130802 @default.
- W3208260947 cites W2036108598 @default.
- W3208260947 cites W2044201287 @default.
- W3208260947 cites W2049633694 @default.
- W3208260947 cites W2065281489 @default.
- W3208260947 cites W2067236515 @default.
- W3208260947 cites W2083895330 @default.
- W3208260947 cites W2091707670 @default.
- W3208260947 cites W2092524565 @default.
- W3208260947 cites W2093402979 @default.
- W3208260947 cites W2098093830 @default.
- W3208260947 cites W2107851313 @default.
- W3208260947 cites W2117684310 @default.
- W3208260947 cites W2128728535 @default.
- W3208260947 cites W2129020329 @default.
- W3208260947 cites W2133752122 @default.
- W3208260947 cites W2160721947 @default.
- W3208260947 cites W2179425537 @default.
- W3208260947 cites W2226825552 @default.
- W3208260947 cites W2260580338 @default.
- W3208260947 cites W2315297180 @default.
- W3208260947 cites W2320062496 @default.
- W3208260947 cites W2412739675 @default.
- W3208260947 cites W2534969466 @default.
- W3208260947 cites W2627006767 @default.
- W3208260947 cites W2765861397 @default.
- W3208260947 cites W2781487518 @default.
- W3208260947 cites W2803787782 @default.
- W3208260947 cites W2804422193 @default.
- W3208260947 cites W2890238694 @default.
- W3208260947 cites W2909211272 @default.
- W3208260947 cites W2953302413 @default.
- W3208260947 cites W2963383782 @default.
- W3208260947 cites W2968426314 @default.
- W3208260947 cites W2969072345 @default.
- W3208260947 cites W2970085243 @default.
- W3208260947 cites W2981642047 @default.
- W3208260947 cites W2991685184 @default.
- W3208260947 cites W3009854800 @default.
- W3208260947 cites W3011163557 @default.
- W3208260947 cites W3100181198 @default.
- W3208260947 cites W3100810942 @default.
- W3208260947 cites W3128519410 @default.
- W3208260947 cites W3159156584 @default.
- W3208260947 cites W3160704433 @default.
- W3208260947 doi "https://doi.org/10.1063/5.0069708" @default.
- W3208260947 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8605902" @default.
- W3208260947 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34800961" @default.
- W3208260947 hasPublicationYear "2021" @default.
- W3208260947 type Work @default.
- W3208260947 sameAs 3208260947 @default.
- W3208260947 citedByCount "9" @default.
- W3208260947 countsByYear W32082609472022 @default.
- W3208260947 countsByYear W32082609472023 @default.
- W3208260947 crossrefType "journal-article" @default.
- W3208260947 hasAuthorship W3208260947A5037192273 @default.
- W3208260947 hasAuthorship W3208260947A5043965319 @default.
- W3208260947 hasAuthorship W3208260947A5049807318 @default.
- W3208260947 hasAuthorship W3208260947A5079782789 @default.
- W3208260947 hasBestOaLocation W32082609471 @default.
- W3208260947 hasConcept C101738243 @default.
- W3208260947 hasConcept C111030470 @default.
- W3208260947 hasConcept C119599485 @default.
- W3208260947 hasConcept C119621388 @default.
- W3208260947 hasConcept C119857082 @default.
- W3208260947 hasConcept C121332964 @default.
- W3208260947 hasConcept C121864883 @default.
- W3208260947 hasConcept C127413603 @default.
- W3208260947 hasConcept C147597530 @default.
- W3208260947 hasConcept C154945302 @default.
- W3208260947 hasConcept C163716315 @default.
- W3208260947 hasConcept C185592680 @default.
- W3208260947 hasConcept C186060115 @default.
- W3208260947 hasConcept C204328495 @default.
- W3208260947 hasConcept C2776545253 @default.
- W3208260947 hasConcept C41008148 @default.
- W3208260947 hasConcept C41608201 @default.
- W3208260947 hasConcept C46141821 @default.
- W3208260947 hasConcept C50644808 @default.
- W3208260947 hasConcept C61224824 @default.
- W3208260947 hasConcept C70518039 @default.
- W3208260947 hasConcept C73555534 @default.
- W3208260947 hasConcept C86803240 @default.
- W3208260947 hasConcept C97355855 @default.
- W3208260947 hasConcept C98763669 @default.
- W3208260947 hasConceptScore W3208260947C101738243 @default.
- W3208260947 hasConceptScore W3208260947C111030470 @default.