Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208272284> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3208272284 endingPage "12" @default.
- W3208272284 startingPage "1" @default.
- W3208272284 abstract "The data generated through telecommunication networks has grown exponentially in the last few years, and the resulting traffic data is unlikely to be processed and analyzed by manual style, especially detecting unintended traffic consumption from normal patterns remains an important issue. This area is critical because anomalies may lead to a reduction in network efficiency. The origin of these anomalies may be a technical problem in a cell or a fraudulent intrusion in the network. Usually, they need to be identified and fixed as soon as possible. Therefore, in order to identify these anomalies, data-driven systems using machine learning algorithms are developed with the aim from the raw data to identify and alert the occurrence of anomalies. Unsupervised learning methods can spontaneously describe the data structure and derive network patterns, which is effective for identifying unintended anomalous behavior and detecting new types of anomalies in a timely manner. In this paper, we use different unsupervised models to analyze traffic data in wireless networks, focusing on models that analyze traffic data combined with timeline information. The factor analysis method is used to derive the results of factor analysis, obtain the three major public factors and comprehensive factor scores, and combine the results with the BP neural network model to conduct a nonlinear simulation study on local governmental debt risk. A potential semantic analysis model based on Gaussian probability is presented and compared with other methods, and experimental results show that this model can provide a robust, over-the-top anomaly detection in a fully automated, data-driven solution." @default.
- W3208272284 created "2021-11-08" @default.
- W3208272284 creator A5068947930 @default.
- W3208272284 date "2021-10-26" @default.
- W3208272284 modified "2023-10-16" @default.
- W3208272284 title "Unsupervised Wireless Network Model-Assisted Abnormal Warning Information in Government Management" @default.
- W3208272284 cites W2790544094 @default.
- W3208272284 cites W2801845877 @default.
- W3208272284 cites W2803807991 @default.
- W3208272284 cites W2885828982 @default.
- W3208272284 cites W2891615129 @default.
- W3208272284 cites W2899300141 @default.
- W3208272284 cites W2926968907 @default.
- W3208272284 cites W2937347211 @default.
- W3208272284 cites W2971598376 @default.
- W3208272284 cites W2992172366 @default.
- W3208272284 cites W3000482555 @default.
- W3208272284 cites W3000522337 @default.
- W3208272284 cites W3008924632 @default.
- W3208272284 cites W3014682610 @default.
- W3208272284 cites W3016558386 @default.
- W3208272284 cites W3036067583 @default.
- W3208272284 cites W3098133185 @default.
- W3208272284 cites W3109685033 @default.
- W3208272284 cites W3114396470 @default.
- W3208272284 cites W3119895098 @default.
- W3208272284 cites W3166447738 @default.
- W3208272284 doi "https://doi.org/10.1155/2021/1614055" @default.
- W3208272284 hasPublicationYear "2021" @default.
- W3208272284 type Work @default.
- W3208272284 sameAs 3208272284 @default.
- W3208272284 citedByCount "2" @default.
- W3208272284 countsByYear W32082722842022 @default.
- W3208272284 crossrefType "journal-article" @default.
- W3208272284 hasAuthorship W3208272284A5068947930 @default.
- W3208272284 hasBestOaLocation W32082722841 @default.
- W3208272284 hasConcept C108037233 @default.
- W3208272284 hasConcept C119857082 @default.
- W3208272284 hasConcept C12267149 @default.
- W3208272284 hasConcept C124101348 @default.
- W3208272284 hasConcept C154945302 @default.
- W3208272284 hasConcept C41008148 @default.
- W3208272284 hasConcept C50644808 @default.
- W3208272284 hasConcept C555944384 @default.
- W3208272284 hasConcept C739882 @default.
- W3208272284 hasConcept C76155785 @default.
- W3208272284 hasConcept C8038995 @default.
- W3208272284 hasConceptScore W3208272284C108037233 @default.
- W3208272284 hasConceptScore W3208272284C119857082 @default.
- W3208272284 hasConceptScore W3208272284C12267149 @default.
- W3208272284 hasConceptScore W3208272284C124101348 @default.
- W3208272284 hasConceptScore W3208272284C154945302 @default.
- W3208272284 hasConceptScore W3208272284C41008148 @default.
- W3208272284 hasConceptScore W3208272284C50644808 @default.
- W3208272284 hasConceptScore W3208272284C555944384 @default.
- W3208272284 hasConceptScore W3208272284C739882 @default.
- W3208272284 hasConceptScore W3208272284C76155785 @default.
- W3208272284 hasConceptScore W3208272284C8038995 @default.
- W3208272284 hasLocation W32082722841 @default.
- W3208272284 hasLocation W32082722842 @default.
- W3208272284 hasOpenAccess W3208272284 @default.
- W3208272284 hasPrimaryLocation W32082722841 @default.
- W3208272284 hasRelatedWork W1996541855 @default.
- W3208272284 hasRelatedWork W2937631562 @default.
- W3208272284 hasRelatedWork W2979979539 @default.
- W3208272284 hasRelatedWork W3044458868 @default.
- W3208272284 hasRelatedWork W3194539120 @default.
- W3208272284 hasRelatedWork W3195168932 @default.
- W3208272284 hasRelatedWork W3196155444 @default.
- W3208272284 hasRelatedWork W4285233543 @default.
- W3208272284 hasRelatedWork W4361795583 @default.
- W3208272284 hasRelatedWork W4362499384 @default.
- W3208272284 hasVolume "2021" @default.
- W3208272284 isParatext "false" @default.
- W3208272284 isRetracted "false" @default.
- W3208272284 magId "3208272284" @default.
- W3208272284 workType "article" @default.