Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208273311> ?p ?o ?g. }
- W3208273311 endingPage "1895" @default.
- W3208273311 startingPage "1885" @default.
- W3208273311 abstract "Our aim was to investigate in a real-life setting the use of machine learning for modelling the postprandial glucose concentrations in morbidly obese patients undergoing Roux-en-Y gastric bypass (RYGB) or one-anastomosis gastric bypass (OAGB).As part of the prospective randomized open-label trial (RYSA), data from obese (BMI ≥35 kg/m2) non-diabetic adult participants were included. Glucose concentrations, measured with FreeStyle Libre, were recorded over 14 preoperative and 14 postoperative days. During these periods, 3-day food intake was self-reported. A machine learning model was applied to estimate glycaemic responses to the reported carbohydrate intakes before and after the bariatric surgeries.Altogether, 10 participants underwent RYGB and 7 participants OAGB surgeries. The glucose concentrations and carbohydrate intakes were reduced postoperatively in both groups. The relative time spent in hypoglycaemia increased regardless of the operation (RYGB, from 9.2 to 28.2%; OAGB, from 1.8 to 37.7%). Postoperatively, we observed an increase in the height of the fitted response curve and a reduction in its width, suggesting that the same amount of carbohydrates caused a larger increase in the postprandial glucose response and that the clearance of the meal-derived blood glucose was faster, with no clinically meaningful differences between the surgeries.A detailed analysis of the glycaemic responses using food diaries has previously been difficult because of the noisy meal data. The utilized machine learning model resolved this by modelling the uncertainty in meal times. Such an approach is likely also applicable in other applications involving dietary data. A marked reduction in overall glycaemia, increase in postprandial glucose response, and rapid glucose clearance from the circulation immediately after surgery are evident after both RYGB and OAGB. Whether nondiabetic individuals would benefit from monitoring the post-surgery hypoglycaemias and the potential to prevent them by dietary means should be investigated.KEY MESSAGESThe use of a novel machine learning model was applicable for combining patient-reported data and time-series data in this clinical study.Marked increase in postprandial glucose concentrations and rapid glucose clearance were observed after both Roux-en-Y gastric bypass and one-anastomosis gastric bypass surgeries.Whether nondiabetic individuals would benefit from monitoring the post-surgery hypoglycaemias and the potential to prevent them by dietary means should be investigated." @default.
- W3208273311 created "2021-11-08" @default.
- W3208273311 creator A5004426724 @default.
- W3208273311 creator A5009801068 @default.
- W3208273311 creator A5031775241 @default.
- W3208273311 creator A5047549223 @default.
- W3208273311 creator A5059226611 @default.
- W3208273311 creator A5066278628 @default.
- W3208273311 creator A5084570046 @default.
- W3208273311 creator A5089920272 @default.
- W3208273311 date "2021-01-01" @default.
- W3208273311 modified "2023-10-15" @default.
- W3208273311 title "Computational modelling of self-reported dietary carbohydrate intake on glucose concentrations in patients undergoing Roux-en-Y gastric bypass versus one-anastomosis gastric bypass" @default.
- W3208273311 cites W148995908 @default.
- W3208273311 cites W1867710651 @default.
- W3208273311 cites W1927710737 @default.
- W3208273311 cites W1974956147 @default.
- W3208273311 cites W1978454776 @default.
- W3208273311 cites W1987698819 @default.
- W3208273311 cites W1998829167 @default.
- W3208273311 cites W2005462835 @default.
- W3208273311 cites W2007578342 @default.
- W3208273311 cites W2011992628 @default.
- W3208273311 cites W2027868875 @default.
- W3208273311 cites W2029091236 @default.
- W3208273311 cites W2030764621 @default.
- W3208273311 cites W2035595814 @default.
- W3208273311 cites W2035886011 @default.
- W3208273311 cites W2042767418 @default.
- W3208273311 cites W2052330440 @default.
- W3208273311 cites W2057194981 @default.
- W3208273311 cites W2061393795 @default.
- W3208273311 cites W2079736195 @default.
- W3208273311 cites W2101303458 @default.
- W3208273311 cites W2102264538 @default.
- W3208273311 cites W2109342401 @default.
- W3208273311 cites W2110791445 @default.
- W3208273311 cites W2147874226 @default.
- W3208273311 cites W2151172917 @default.
- W3208273311 cites W2151402544 @default.
- W3208273311 cites W2155186909 @default.
- W3208273311 cites W2317586427 @default.
- W3208273311 cites W2405379283 @default.
- W3208273311 cites W2536270146 @default.
- W3208273311 cites W2755473612 @default.
- W3208273311 cites W2765820991 @default.
- W3208273311 cites W2773473201 @default.
- W3208273311 cites W2821369627 @default.
- W3208273311 cites W2968887820 @default.
- W3208273311 cites W2997720693 @default.
- W3208273311 cites W3017915994 @default.
- W3208273311 cites W4248681815 @default.
- W3208273311 doi "https://doi.org/10.1080/07853890.2021.1964035" @default.
- W3208273311 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8567939" @default.
- W3208273311 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34714211" @default.
- W3208273311 hasPublicationYear "2021" @default.
- W3208273311 type Work @default.
- W3208273311 sameAs 3208273311 @default.
- W3208273311 citedByCount "2" @default.
- W3208273311 countsByYear W32082733112022 @default.
- W3208273311 countsByYear W32082733112023 @default.
- W3208273311 crossrefType "journal-article" @default.
- W3208273311 hasAuthorship W3208273311A5004426724 @default.
- W3208273311 hasAuthorship W3208273311A5009801068 @default.
- W3208273311 hasAuthorship W3208273311A5031775241 @default.
- W3208273311 hasAuthorship W3208273311A5047549223 @default.
- W3208273311 hasAuthorship W3208273311A5059226611 @default.
- W3208273311 hasAuthorship W3208273311A5066278628 @default.
- W3208273311 hasAuthorship W3208273311A5084570046 @default.
- W3208273311 hasAuthorship W3208273311A5089920272 @default.
- W3208273311 hasBestOaLocation W32082733111 @default.
- W3208273311 hasConcept C126322002 @default.
- W3208273311 hasConcept C134018914 @default.
- W3208273311 hasConcept C136269033 @default.
- W3208273311 hasConcept C141071460 @default.
- W3208273311 hasConcept C2778199505 @default.
- W3208273311 hasConcept C2778345441 @default.
- W3208273311 hasConcept C2778977261 @default.
- W3208273311 hasConcept C3019402062 @default.
- W3208273311 hasConcept C42407357 @default.
- W3208273311 hasConcept C511355011 @default.
- W3208273311 hasConcept C544821477 @default.
- W3208273311 hasConcept C555293320 @default.
- W3208273311 hasConcept C71924100 @default.
- W3208273311 hasConcept C76318530 @default.
- W3208273311 hasConcept C8443397 @default.
- W3208273311 hasConcept C90924648 @default.
- W3208273311 hasConceptScore W3208273311C126322002 @default.
- W3208273311 hasConceptScore W3208273311C134018914 @default.
- W3208273311 hasConceptScore W3208273311C136269033 @default.
- W3208273311 hasConceptScore W3208273311C141071460 @default.
- W3208273311 hasConceptScore W3208273311C2778199505 @default.
- W3208273311 hasConceptScore W3208273311C2778345441 @default.
- W3208273311 hasConceptScore W3208273311C2778977261 @default.
- W3208273311 hasConceptScore W3208273311C3019402062 @default.
- W3208273311 hasConceptScore W3208273311C42407357 @default.
- W3208273311 hasConceptScore W3208273311C511355011 @default.
- W3208273311 hasConceptScore W3208273311C544821477 @default.