Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208275302> ?p ?o ?g. }
- W3208275302 abstract "While Granger causality (GC) has been often employed in network neuroscience, most GC applications are based on linear multivariate autoregressive (MVAR) models. However, real-life systems like biological networks exhibit notable nonlinear behaviour, hence undermining the validity of MVAR-based GC (MVAR-GC). Most nonlinear GC estimators only cater for additive nonlinearities or, alternatively, are based on recurrent neural networks or long short-term memory networks, which present considerable training difficulties and tailoring needs. We reformulate the GC framework in terms of echo-state networks-based models for arbitrarily complex networks, and characterize its ability to capture nonlinear causal relations in a network of noisy Duffing oscillators, showing a net advantage of echo state GC (ES-GC) in detecting nonlinear, causal links. We then explore the structure of ES-GC networks in the human brain employing functional MRI data from 1003 healthy subjects drawn from the human connectome project, demonstrating the existence of previously unknown directed within-brain interactions. In addition, we examine joint brain-heart signals in 15 subjects where we explore directed interaction between brain networks and central vagal cardiac control in order to investigate the so-called central autonomic network in a causal manner. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'." @default.
- W3208275302 created "2021-11-08" @default.
- W3208275302 creator A5010629974 @default.
- W3208275302 creator A5025775404 @default.
- W3208275302 creator A5048596584 @default.
- W3208275302 date "2021-10-25" @default.
- W3208275302 modified "2023-10-12" @default.
- W3208275302 title "Echo state network models for nonlinear Granger causality" @default.
- W3208275302 cites W1494601557 @default.
- W3208275302 cites W1510073064 @default.
- W3208275302 cites W1602122992 @default.
- W3208275302 cites W1607114662 @default.
- W3208275302 cites W1689711448 @default.
- W3208275302 cites W1861194465 @default.
- W3208275302 cites W1961326395 @default.
- W3208275302 cites W1983021753 @default.
- W3208275302 cites W1983208069 @default.
- W3208275302 cites W2001789423 @default.
- W3208275302 cites W2005388202 @default.
- W3208275302 cites W2008750017 @default.
- W3208275302 cites W2020126697 @default.
- W3208275302 cites W2024729467 @default.
- W3208275302 cites W2050523241 @default.
- W3208275302 cites W2060431629 @default.
- W3208275302 cites W2066400502 @default.
- W3208275302 cites W2071977196 @default.
- W3208275302 cites W2076750860 @default.
- W3208275302 cites W2076927242 @default.
- W3208275302 cites W2079656335 @default.
- W3208275302 cites W2083278075 @default.
- W3208275302 cites W2096023955 @default.
- W3208275302 cites W2102784831 @default.
- W3208275302 cites W2103179919 @default.
- W3208275302 cites W2109198067 @default.
- W3208275302 cites W2116261113 @default.
- W3208275302 cites W2122622352 @default.
- W3208275302 cites W2122695558 @default.
- W3208275302 cites W2127913883 @default.
- W3208275302 cites W2129584734 @default.
- W3208275302 cites W2129621723 @default.
- W3208275302 cites W2129918244 @default.
- W3208275302 cites W2130535167 @default.
- W3208275302 cites W2133305023 @default.
- W3208275302 cites W2151969869 @default.
- W3208275302 cites W2178225550 @default.
- W3208275302 cites W2212061331 @default.
- W3208275302 cites W2270296195 @default.
- W3208275302 cites W2428777361 @default.
- W3208275302 cites W2481914509 @default.
- W3208275302 cites W2523772517 @default.
- W3208275302 cites W2589200199 @default.
- W3208275302 cites W2609728307 @default.
- W3208275302 cites W2744112845 @default.
- W3208275302 cites W2795581154 @default.
- W3208275302 cites W2805426804 @default.
- W3208275302 cites W2805957063 @default.
- W3208275302 cites W2810439763 @default.
- W3208275302 cites W2836119222 @default.
- W3208275302 cites W2900404532 @default.
- W3208275302 cites W2908623803 @default.
- W3208275302 cites W2911926566 @default.
- W3208275302 cites W2944059687 @default.
- W3208275302 cites W2963311760 @default.
- W3208275302 cites W2977883299 @default.
- W3208275302 cites W2980137674 @default.
- W3208275302 cites W3047674696 @default.
- W3208275302 cites W3118388636 @default.
- W3208275302 cites W390146837 @default.
- W3208275302 cites W4246473796 @default.
- W3208275302 cites W4248434349 @default.
- W3208275302 cites W4251036056 @default.
- W3208275302 cites W4312512934 @default.
- W3208275302 doi "https://doi.org/10.1098/rsta.2020.0256" @default.
- W3208275302 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34689621" @default.
- W3208275302 hasPublicationYear "2021" @default.
- W3208275302 type Work @default.
- W3208275302 sameAs 3208275302 @default.
- W3208275302 citedByCount "8" @default.
- W3208275302 countsByYear W32082753022021 @default.
- W3208275302 countsByYear W32082753022022 @default.
- W3208275302 countsByYear W32082753022023 @default.
- W3208275302 crossrefType "journal-article" @default.
- W3208275302 hasAuthorship W3208275302A5010629974 @default.
- W3208275302 hasAuthorship W3208275302A5025775404 @default.
- W3208275302 hasAuthorship W3208275302A5048596584 @default.
- W3208275302 hasBestOaLocation W32082753022 @default.
- W3208275302 hasConcept C105795698 @default.
- W3208275302 hasConcept C11671645 @default.
- W3208275302 hasConcept C119857082 @default.
- W3208275302 hasConcept C121332964 @default.
- W3208275302 hasConcept C129824826 @default.
- W3208275302 hasConcept C147168706 @default.
- W3208275302 hasConcept C149782125 @default.
- W3208275302 hasConcept C154945302 @default.
- W3208275302 hasConcept C158622935 @default.
- W3208275302 hasConcept C159877910 @default.
- W3208275302 hasConcept C172025690 @default.
- W3208275302 hasConcept C185429906 @default.
- W3208275302 hasConcept C33923547 @default.
- W3208275302 hasConcept C41008148 @default.