Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208282496> ?p ?o ?g. }
- W3208282496 endingPage "11256" @default.
- W3208282496 startingPage "11240" @default.
- W3208282496 abstract "Multiple Kernel Learning (MKL) algorithms are among the most successful classification methods for hyperspectral data. Nevertheless, these algorithms suffer from two main drawbacks of computational complexity and debility to admit to the end-to-end learning paradigm. This paper proposed a Convolutional Kernel Classifier (CKC) for hyperspectral remote sensing images to address these issues. The CKC uses the Nystrm approximation method to estimate a low-rank approximation of the basis kernels, thus solves the issues associated with the high dimensionality of the basis kernels. The CKC uses deep architecture to learn the optimal combination of the basis kernels and the classification task to enable end-to-end learning. The proposed CKCs architecture is based on a 1D-Convolutional Neural Network (CNN-1D), and it uses kernel dropout to prevent overfitting. It is the first instance of deep-kernel algorithms in the field of remote sensing. The proposed method was compared with several well-known hyperspectral image analysis MKL algorithms, including a multi-kernel variant of the deep kernel machine optimization (M-DKMO), MKL-average, Simple-MKL, and Generalize MKL (GMKL), and state-of-the-art deep learning models, including Vanilla Recurrent Neural Network (VanillaRNN) and CNN-1D in classifying four benchmark hyperspectral datasets. The experimental results show that the CKC consistently outperforms all the competitor methods, and its runtime is lower than its MKL algorithm counterparts on four benchmark hyperspectral datasets. Moreover, the Nystrm approximation solves the high dimensionality of the basis kernels and boosts classification accuracy. The source codes of CKC are available from: https://github.com/MohsenAnsari1373/A-New-Convolutional-Kernel-Classifier-for-Hyperspectral-Image-Classification ." @default.
- W3208282496 created "2021-11-08" @default.
- W3208282496 creator A5003182960 @default.
- W3208282496 creator A5063724972 @default.
- W3208282496 creator A5077650789 @default.
- W3208282496 creator A5078970832 @default.
- W3208282496 date "2021-01-01" @default.
- W3208282496 modified "2023-10-16" @default.
- W3208282496 title "A New Convolutional Kernel Classifier for Hyperspectral Image Classification" @default.
- W3208282496 cites W1965309615 @default.
- W3208282496 cites W2015654075 @default.
- W3208282496 cites W2031823405 @default.
- W3208282496 cites W2033244207 @default.
- W3208282496 cites W2035875937 @default.
- W3208282496 cites W2103094532 @default.
- W3208282496 cites W2146722014 @default.
- W3208282496 cites W2176950688 @default.
- W3208282496 cites W2217490359 @default.
- W3208282496 cites W2533102868 @default.
- W3208282496 cites W2546448326 @default.
- W3208282496 cites W2586997739 @default.
- W3208282496 cites W2588117332 @default.
- W3208282496 cites W2618530766 @default.
- W3208282496 cites W2767819622 @default.
- W3208282496 cites W2885785305 @default.
- W3208282496 cites W2897962879 @default.
- W3208282496 cites W2903909270 @default.
- W3208282496 cites W2919114247 @default.
- W3208282496 cites W2950325582 @default.
- W3208282496 cites W2955931535 @default.
- W3208282496 cites W2964211601 @default.
- W3208282496 cites W2964497440 @default.
- W3208282496 cites W2991616716 @default.
- W3208282496 cites W2996798951 @default.
- W3208282496 cites W3008905564 @default.
- W3208282496 cites W3025630664 @default.
- W3208282496 cites W3036761806 @default.
- W3208282496 cites W3047443805 @default.
- W3208282496 cites W3048631361 @default.
- W3208282496 cites W3092342941 @default.
- W3208282496 cites W3100011500 @default.
- W3208282496 cites W3101012758 @default.
- W3208282496 cites W3140885850 @default.
- W3208282496 cites W3165729427 @default.
- W3208282496 cites W3168367808 @default.
- W3208282496 cites W3168931281 @default.
- W3208282496 doi "https://doi.org/10.1109/jstars.2021.3123087" @default.
- W3208282496 hasPublicationYear "2021" @default.
- W3208282496 type Work @default.
- W3208282496 sameAs 3208282496 @default.
- W3208282496 citedByCount "9" @default.
- W3208282496 countsByYear W32082824962022 @default.
- W3208282496 countsByYear W32082824962023 @default.
- W3208282496 crossrefType "journal-article" @default.
- W3208282496 hasAuthorship W3208282496A5003182960 @default.
- W3208282496 hasAuthorship W3208282496A5063724972 @default.
- W3208282496 hasAuthorship W3208282496A5077650789 @default.
- W3208282496 hasAuthorship W3208282496A5078970832 @default.
- W3208282496 hasBestOaLocation W32082824961 @default.
- W3208282496 hasConcept C108583219 @default.
- W3208282496 hasConcept C114614502 @default.
- W3208282496 hasConcept C119857082 @default.
- W3208282496 hasConcept C122280245 @default.
- W3208282496 hasConcept C12267149 @default.
- W3208282496 hasConcept C13280743 @default.
- W3208282496 hasConcept C153180895 @default.
- W3208282496 hasConcept C154945302 @default.
- W3208282496 hasConcept C159078339 @default.
- W3208282496 hasConcept C185798385 @default.
- W3208282496 hasConcept C205649164 @default.
- W3208282496 hasConcept C22019652 @default.
- W3208282496 hasConcept C2776879701 @default.
- W3208282496 hasConcept C33923547 @default.
- W3208282496 hasConcept C41008148 @default.
- W3208282496 hasConcept C50644808 @default.
- W3208282496 hasConcept C74193536 @default.
- W3208282496 hasConcept C81363708 @default.
- W3208282496 hasConcept C95623464 @default.
- W3208282496 hasConceptScore W3208282496C108583219 @default.
- W3208282496 hasConceptScore W3208282496C114614502 @default.
- W3208282496 hasConceptScore W3208282496C119857082 @default.
- W3208282496 hasConceptScore W3208282496C122280245 @default.
- W3208282496 hasConceptScore W3208282496C12267149 @default.
- W3208282496 hasConceptScore W3208282496C13280743 @default.
- W3208282496 hasConceptScore W3208282496C153180895 @default.
- W3208282496 hasConceptScore W3208282496C154945302 @default.
- W3208282496 hasConceptScore W3208282496C159078339 @default.
- W3208282496 hasConceptScore W3208282496C185798385 @default.
- W3208282496 hasConceptScore W3208282496C205649164 @default.
- W3208282496 hasConceptScore W3208282496C22019652 @default.
- W3208282496 hasConceptScore W3208282496C2776879701 @default.
- W3208282496 hasConceptScore W3208282496C33923547 @default.
- W3208282496 hasConceptScore W3208282496C41008148 @default.
- W3208282496 hasConceptScore W3208282496C50644808 @default.
- W3208282496 hasConceptScore W3208282496C74193536 @default.
- W3208282496 hasConceptScore W3208282496C81363708 @default.
- W3208282496 hasConceptScore W3208282496C95623464 @default.
- W3208282496 hasLocation W32082824961 @default.