Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208289567> ?p ?o ?g. }
- W3208289567 endingPage "117474" @default.
- W3208289567 startingPage "117474" @default.
- W3208289567 abstract "Digital image correlation (DIC) has become an industry standard to retrieve accurate displacement and strain measurement in tensile testing and other material characterization. Though traditional DIC offers a high precision estimation of deformation for general tensile testing cases, the prediction becomes unstable at large deformation or when the speckle patterns start to tear. In addition, traditional DIC requires a long computation time and often produces a low spatial resolution output affected by filtering and speckle pattern quality. To address these challenges, we propose a new deep learning-based DIC approach – Deep DIC, in which two convolutional neural networks, DisplacementNet and StrainNet, are designed to work together for end-to-end prediction of displacements and strains. DisplacementNet predicts the displacement field and adaptively tracks a region of interest. StrainNet predicts the strain field directly from the image input without relying on the displacement prediction, which significantly improves the strain prediction accuracy. A new dataset generation method is developed to synthesize a realistic and comprehensive dataset, including the generation of speckle patterns and the deformation of the speckle image with synthetic displacement fields. Though trained on synthetic datasets only, Deep DIC gives highly consistent and comparable predictions of displacement and strain with those obtained from commercial DIC software for real experiments, while it outperforms commercial software with very robust strain prediction even at large and localized deformation and varied pattern qualities. In addition, Deep DIC is capable of real-time prediction of deformation with a calculation time down to milliseconds." @default.
- W3208289567 created "2021-11-08" @default.
- W3208289567 creator A5025598692 @default.
- W3208289567 creator A5027904523 @default.
- W3208289567 creator A5048409991 @default.
- W3208289567 creator A5064842058 @default.
- W3208289567 date "2022-04-01" @default.
- W3208289567 modified "2023-10-05" @default.
- W3208289567 title "Deep DIC: Deep learning-based digital image correlation for end-to-end displacement and strain measurement" @default.
- W3208289567 cites W1896929487 @default.
- W3208289567 cites W1968240582 @default.
- W3208289567 cites W1980979349 @default.
- W3208289567 cites W1996088994 @default.
- W3208289567 cites W2006204324 @default.
- W3208289567 cites W2037859548 @default.
- W3208289567 cites W2051774872 @default.
- W3208289567 cites W2058669998 @default.
- W3208289567 cites W2063509315 @default.
- W3208289567 cites W2066815131 @default.
- W3208289567 cites W2081887802 @default.
- W3208289567 cites W2083824703 @default.
- W3208289567 cites W2112732289 @default.
- W3208289567 cites W2140340863 @default.
- W3208289567 cites W2226468791 @default.
- W3208289567 cites W2514730806 @default.
- W3208289567 cites W2528333963 @default.
- W3208289567 cites W2963881378 @default.
- W3208289567 cites W3043336824 @default.
- W3208289567 cites W3083912756 @default.
- W3208289567 cites W3119905647 @default.
- W3208289567 cites W3199040861 @default.
- W3208289567 doi "https://doi.org/10.1016/j.jmatprotec.2021.117474" @default.
- W3208289567 hasPublicationYear "2022" @default.
- W3208289567 type Work @default.
- W3208289567 sameAs 3208289567 @default.
- W3208289567 citedByCount "24" @default.
- W3208289567 countsByYear W32082895672022 @default.
- W3208289567 countsByYear W32082895672023 @default.
- W3208289567 crossrefType "journal-article" @default.
- W3208289567 hasAuthorship W3208289567A5025598692 @default.
- W3208289567 hasAuthorship W3208289567A5027904523 @default.
- W3208289567 hasAuthorship W3208289567A5048409991 @default.
- W3208289567 hasAuthorship W3208289567A5064842058 @default.
- W3208289567 hasBestOaLocation W32082895672 @default.
- W3208289567 hasConcept C102290492 @default.
- W3208289567 hasConcept C107551265 @default.
- W3208289567 hasConcept C108583219 @default.
- W3208289567 hasConcept C11413529 @default.
- W3208289567 hasConcept C115635565 @default.
- W3208289567 hasConcept C127413603 @default.
- W3208289567 hasConcept C135628077 @default.
- W3208289567 hasConcept C154945302 @default.
- W3208289567 hasConcept C15744967 @default.
- W3208289567 hasConcept C159985019 @default.
- W3208289567 hasConcept C192562407 @default.
- W3208289567 hasConcept C204366326 @default.
- W3208289567 hasConcept C29660869 @default.
- W3208289567 hasConcept C41008148 @default.
- W3208289567 hasConcept C45374587 @default.
- W3208289567 hasConcept C542102704 @default.
- W3208289567 hasConcept C66938386 @default.
- W3208289567 hasConcept C81363708 @default.
- W3208289567 hasConceptScore W3208289567C102290492 @default.
- W3208289567 hasConceptScore W3208289567C107551265 @default.
- W3208289567 hasConceptScore W3208289567C108583219 @default.
- W3208289567 hasConceptScore W3208289567C11413529 @default.
- W3208289567 hasConceptScore W3208289567C115635565 @default.
- W3208289567 hasConceptScore W3208289567C127413603 @default.
- W3208289567 hasConceptScore W3208289567C135628077 @default.
- W3208289567 hasConceptScore W3208289567C154945302 @default.
- W3208289567 hasConceptScore W3208289567C15744967 @default.
- W3208289567 hasConceptScore W3208289567C159985019 @default.
- W3208289567 hasConceptScore W3208289567C192562407 @default.
- W3208289567 hasConceptScore W3208289567C204366326 @default.
- W3208289567 hasConceptScore W3208289567C29660869 @default.
- W3208289567 hasConceptScore W3208289567C41008148 @default.
- W3208289567 hasConceptScore W3208289567C45374587 @default.
- W3208289567 hasConceptScore W3208289567C542102704 @default.
- W3208289567 hasConceptScore W3208289567C66938386 @default.
- W3208289567 hasConceptScore W3208289567C81363708 @default.
- W3208289567 hasFunder F4320309475 @default.
- W3208289567 hasFunder F4320333924 @default.
- W3208289567 hasLocation W32082895671 @default.
- W3208289567 hasLocation W32082895672 @default.
- W3208289567 hasOpenAccess W3208289567 @default.
- W3208289567 hasPrimaryLocation W32082895671 @default.
- W3208289567 hasRelatedWork W1539193595 @default.
- W3208289567 hasRelatedWork W2030514831 @default.
- W3208289567 hasRelatedWork W2038604545 @default.
- W3208289567 hasRelatedWork W2049960092 @default.
- W3208289567 hasRelatedWork W2069519895 @default.
- W3208289567 hasRelatedWork W2360211730 @default.
- W3208289567 hasRelatedWork W2416237852 @default.
- W3208289567 hasRelatedWork W2518842038 @default.
- W3208289567 hasRelatedWork W2612097214 @default.
- W3208289567 hasRelatedWork W3006565151 @default.
- W3208289567 hasVolume "302" @default.
- W3208289567 isParatext "false" @default.