Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208294519> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3208294519 abstract "Information gets spread rapidly in the world of the internet. The internet has become the first choice of people for medication tips related to their health problems. However, this ever-growing usage of the internet has also led to the spread of misinformation. The misinformation in healthcare has severe effects on the life of people, thus efforts are required to detect the misinformation as well as fact-check the information before using it. In this paper, the authors proposed a model to detect and fact-check the misinformation in the healthcare domain. The model extracts the healthcare-related URLs from the web, pre-processes it, computes Term-Frequency, extracts sentimental and grammatical features to detect misinformation, and computes distance measures viz. Euclidean, Jaccard, and Cosine similarity to fact-check the URLs as True or False based on the manually generated dataset with expert’s opinions. The model was evaluated using five state-of-the-art machine learning classifiers Logistic Regression, Support Vector Machine, Naïve Bayes, Decision Tree, and Random forest. The experimental results showed that the sentimental features are crucial while detecting misinformation as more negative words are found in URLs containing misinformation compared to the URLs having true information. It was observed that Naïve Bayes outperformed all other models in terms of accuracy showing 98.7% accuracy whereas the decision tree classifier showed less accuracy compared to all other models showing an accuracy of 92.88%. Also, the Jaccard Distance measure was found to be the best distance measure algorithm in terms of accuracy compared to Euclidean distance and Cosine similarity measures." @default.
- W3208294519 created "2021-11-08" @default.
- W3208294519 creator A5055903884 @default.
- W3208294519 creator A5081396819 @default.
- W3208294519 date "2021-01-01" @default.
- W3208294519 modified "2023-10-03" @default.
- W3208294519 title "Healthcare Misinformation Detection and Fact-Checking: A Novel Approach" @default.
- W3208294519 cites W1532503642 @default.
- W3208294519 cites W2049961348 @default.
- W3208294519 cites W2084591134 @default.
- W3208294519 cites W2116926372 @default.
- W3208294519 cites W2538541058 @default.
- W3208294519 cites W2607299704 @default.
- W3208294519 cites W2735860954 @default.
- W3208294519 cites W2799029897 @default.
- W3208294519 cites W2807164052 @default.
- W3208294519 cites W2912707329 @default.
- W3208294519 cites W2913198899 @default.
- W3208294519 cites W2956394034 @default.
- W3208294519 cites W2964623639 @default.
- W3208294519 cites W2973990699 @default.
- W3208294519 cites W2977886427 @default.
- W3208294519 cites W2980986395 @default.
- W3208294519 cites W2982591719 @default.
- W3208294519 cites W3025042490 @default.
- W3208294519 cites W3031265169 @default.
- W3208294519 cites W3045645804 @default.
- W3208294519 cites W3046865757 @default.
- W3208294519 cites W3092238560 @default.
- W3208294519 cites W3094244789 @default.
- W3208294519 cites W3098167054 @default.
- W3208294519 cites W3112246497 @default.
- W3208294519 cites W3113242752 @default.
- W3208294519 cites W3121571719 @default.
- W3208294519 cites W3127056209 @default.
- W3208294519 cites W3131630641 @default.
- W3208294519 cites W3135683649 @default.
- W3208294519 cites W3145233627 @default.
- W3208294519 cites W3169823389 @default.
- W3208294519 doi "https://doi.org/10.14569/ijacsa.2021.0121032" @default.
- W3208294519 hasPublicationYear "2021" @default.
- W3208294519 type Work @default.
- W3208294519 sameAs 3208294519 @default.
- W3208294519 citedByCount "3" @default.
- W3208294519 countsByYear W32082945192022 @default.
- W3208294519 countsByYear W32082945192023 @default.
- W3208294519 crossrefType "journal-article" @default.
- W3208294519 hasAuthorship W3208294519A5055903884 @default.
- W3208294519 hasAuthorship W3208294519A5081396819 @default.
- W3208294519 hasBestOaLocation W32082945191 @default.
- W3208294519 hasConcept C110875604 @default.
- W3208294519 hasConcept C119857082 @default.
- W3208294519 hasConcept C12267149 @default.
- W3208294519 hasConcept C136764020 @default.
- W3208294519 hasConcept C153180895 @default.
- W3208294519 hasConcept C154945302 @default.
- W3208294519 hasConcept C203519979 @default.
- W3208294519 hasConcept C23123220 @default.
- W3208294519 hasConcept C2776990098 @default.
- W3208294519 hasConcept C2780762811 @default.
- W3208294519 hasConcept C38652104 @default.
- W3208294519 hasConcept C41008148 @default.
- W3208294519 hasConcept C52001869 @default.
- W3208294519 hasConcept C84525736 @default.
- W3208294519 hasConceptScore W3208294519C110875604 @default.
- W3208294519 hasConceptScore W3208294519C119857082 @default.
- W3208294519 hasConceptScore W3208294519C12267149 @default.
- W3208294519 hasConceptScore W3208294519C136764020 @default.
- W3208294519 hasConceptScore W3208294519C153180895 @default.
- W3208294519 hasConceptScore W3208294519C154945302 @default.
- W3208294519 hasConceptScore W3208294519C203519979 @default.
- W3208294519 hasConceptScore W3208294519C23123220 @default.
- W3208294519 hasConceptScore W3208294519C2776990098 @default.
- W3208294519 hasConceptScore W3208294519C2780762811 @default.
- W3208294519 hasConceptScore W3208294519C38652104 @default.
- W3208294519 hasConceptScore W3208294519C41008148 @default.
- W3208294519 hasConceptScore W3208294519C52001869 @default.
- W3208294519 hasConceptScore W3208294519C84525736 @default.
- W3208294519 hasIssue "10" @default.
- W3208294519 hasLocation W32082945191 @default.
- W3208294519 hasOpenAccess W3208294519 @default.
- W3208294519 hasPrimaryLocation W32082945191 @default.
- W3208294519 hasRelatedWork W1470425429 @default.
- W3208294519 hasRelatedWork W3022791929 @default.
- W3208294519 hasRelatedWork W3186233728 @default.
- W3208294519 hasRelatedWork W3213308033 @default.
- W3208294519 hasRelatedWork W4200057378 @default.
- W3208294519 hasRelatedWork W4291177832 @default.
- W3208294519 hasRelatedWork W4319998330 @default.
- W3208294519 hasRelatedWork W4360585147 @default.
- W3208294519 hasRelatedWork W4377964522 @default.
- W3208294519 hasRelatedWork W4384345534 @default.
- W3208294519 hasVolume "12" @default.
- W3208294519 isParatext "false" @default.
- W3208294519 isRetracted "false" @default.
- W3208294519 magId "3208294519" @default.
- W3208294519 workType "article" @default.