Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208294543> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3208294543 endingPage "358" @default.
- W3208294543 startingPage "348" @default.
- W3208294543 abstract "Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Collapsing the Tower - On the Complexity of Multistage Stochastic IPsKim-Manuel Klein and Janina ReuterKim-Manuel Klein and Janina Reuterpp.348 - 358Chapter DOI:https://doi.org/10.1137/1.9781611977073.17PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract In this paper we study the computational complexity of solving a class of block structured integer programs (IPs) - so called multistage stochastic IPs. A multistage stochastic IP is an IP of the form where the constraint matrix consists of small block matrices ordered on the diagonal line and for each stage there are larger blocks with few columns connecting the blocks in a tree like fashion. Over the last years there was enormous progress in the area of block structured IPs. For many of the known block IP classes - such as n-fold, tree-fold, and two-stage stochastic IPs, nearly matching upper and lower bounds are known concerning their computational complexity. One of the major gaps that remained however was the parameter dependency in the running time for an algorithm solving multistage stochastic IPs. Previous algorithms require a tower of t exponentials, where t is the number of stages, while only a double exponential lower bound was known. In this paper we show that the tower of t exponentials is actually not necessary. We can show an improved running time for the algorithm solving multistage stochastic IPs with a running time of , where d is the sum of columns in the connecting blocks and n is the number of blocks on the lowest stage. Hence, we obtain the first bound by an elementary function for the running time of an algorithm solving multistage stochastic IPs. In contrast to previous works, our algorithm has only a triple exponential dependency on the parameters and only doubly exponential for every constant t. By this we come very close the known double exponential bound (based on the exponential time hypothesis) that holds already for two-stage stochastic IPs, i.e. multistage stochastic IPs with only two stages. The improved running time of the algorithm is based on new bounds for the proximity of multistage stochastic IPs. The idea behind the bound is based on generalization for a structural lemma originally used for two-stage stochastic IPs. While the structural lemma requires iteration to be applied to multistage stochastic IPs, our generalization directly applies to inherent combinatorial properties of multiple stages. Already a special case of our lemma yields an improved bound for the Graver Complexity of multistage stochastic IPs. Previous chapter Next chapter RelatedDetails Published:2022eISBN:978-1-61197-707-3 https://doi.org/10.1137/1.9781611977073Book Series Name:ProceedingsBook Code:PRDA22Book Pages:xvii + 3771" @default.
- W3208294543 created "2021-11-08" @default.
- W3208294543 creator A5025946017 @default.
- W3208294543 creator A5035636355 @default.
- W3208294543 date "2022-01-01" @default.
- W3208294543 modified "2023-10-18" @default.
- W3208294543 title "Collapsing the Tower - On the Complexity of Multistage Stochastic IPs" @default.
- W3208294543 cites W1569990960 @default.
- W3208294543 cites W1779426617 @default.
- W3208294543 cites W1963547452 @default.
- W3208294543 cites W1967335126 @default.
- W3208294543 cites W2043263883 @default.
- W3208294543 cites W2046680178 @default.
- W3208294543 cites W2057974767 @default.
- W3208294543 cites W2061272534 @default.
- W3208294543 cites W2066460041 @default.
- W3208294543 cites W2085952738 @default.
- W3208294543 cites W2115535801 @default.
- W3208294543 cites W2124577214 @default.
- W3208294543 cites W2145026225 @default.
- W3208294543 cites W2604943029 @default.
- W3208294543 cites W2779795514 @default.
- W3208294543 cites W2930306418 @default.
- W3208294543 cites W2945519246 @default.
- W3208294543 cites W2963126600 @default.
- W3208294543 cites W2964835449 @default.
- W3208294543 cites W3021408647 @default.
- W3208294543 cites W3041498984 @default.
- W3208294543 cites W3095252247 @default.
- W3208294543 cites W3103589466 @default.
- W3208294543 cites W3117221493 @default.
- W3208294543 cites W3160977836 @default.
- W3208294543 cites W3189732323 @default.
- W3208294543 cites W3197427365 @default.
- W3208294543 cites W2991505819 @default.
- W3208294543 doi "https://doi.org/10.1137/1.9781611977073.17" @default.
- W3208294543 hasPublicationYear "2022" @default.
- W3208294543 type Work @default.
- W3208294543 sameAs 3208294543 @default.
- W3208294543 citedByCount "2" @default.
- W3208294543 countsByYear W32082945432021 @default.
- W3208294543 countsByYear W32082945432022 @default.
- W3208294543 crossrefType "book-chapter" @default.
- W3208294543 hasAuthorship W3208294543A5025946017 @default.
- W3208294543 hasAuthorship W3208294543A5035636355 @default.
- W3208294543 hasBestOaLocation W32082945432 @default.
- W3208294543 hasConcept C113174947 @default.
- W3208294543 hasConcept C11413529 @default.
- W3208294543 hasConcept C114614502 @default.
- W3208294543 hasConcept C118615104 @default.
- W3208294543 hasConcept C127413603 @default.
- W3208294543 hasConcept C130367717 @default.
- W3208294543 hasConcept C134306372 @default.
- W3208294543 hasConcept C147176958 @default.
- W3208294543 hasConcept C151376022 @default.
- W3208294543 hasConcept C179799912 @default.
- W3208294543 hasConcept C2524010 @default.
- W3208294543 hasConcept C2777210771 @default.
- W3208294543 hasConcept C2777831296 @default.
- W3208294543 hasConcept C33923547 @default.
- W3208294543 hasConcept C41008148 @default.
- W3208294543 hasConcept C77553402 @default.
- W3208294543 hasConceptScore W3208294543C113174947 @default.
- W3208294543 hasConceptScore W3208294543C11413529 @default.
- W3208294543 hasConceptScore W3208294543C114614502 @default.
- W3208294543 hasConceptScore W3208294543C118615104 @default.
- W3208294543 hasConceptScore W3208294543C127413603 @default.
- W3208294543 hasConceptScore W3208294543C130367717 @default.
- W3208294543 hasConceptScore W3208294543C134306372 @default.
- W3208294543 hasConceptScore W3208294543C147176958 @default.
- W3208294543 hasConceptScore W3208294543C151376022 @default.
- W3208294543 hasConceptScore W3208294543C179799912 @default.
- W3208294543 hasConceptScore W3208294543C2524010 @default.
- W3208294543 hasConceptScore W3208294543C2777210771 @default.
- W3208294543 hasConceptScore W3208294543C2777831296 @default.
- W3208294543 hasConceptScore W3208294543C33923547 @default.
- W3208294543 hasConceptScore W3208294543C41008148 @default.
- W3208294543 hasConceptScore W3208294543C77553402 @default.
- W3208294543 hasLocation W32082945431 @default.
- W3208294543 hasLocation W32082945432 @default.
- W3208294543 hasOpenAccess W3208294543 @default.
- W3208294543 hasPrimaryLocation W32082945431 @default.
- W3208294543 hasRelatedWork W2058177594 @default.
- W3208294543 hasRelatedWork W2060665237 @default.
- W3208294543 hasRelatedWork W2144093428 @default.
- W3208294543 hasRelatedWork W2362064715 @default.
- W3208294543 hasRelatedWork W2642600425 @default.
- W3208294543 hasRelatedWork W2963726605 @default.
- W3208294543 hasRelatedWork W3000486299 @default.
- W3208294543 hasRelatedWork W3088694259 @default.
- W3208294543 hasRelatedWork W3150190294 @default.
- W3208294543 hasRelatedWork W4289701035 @default.
- W3208294543 isParatext "false" @default.
- W3208294543 isRetracted "false" @default.
- W3208294543 magId "3208294543" @default.
- W3208294543 workType "book-chapter" @default.