Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208302364> ?p ?o ?g. }
- W3208302364 abstract "Traffic data analysis and mining are elemental functions of Intelligent Transportation Systems. In recent year, tremendous sensors are deployed in order to collect big data, and equipment maintenance costs a lot. With the development of deep learning, especially especially Generative Adversarial Networks, we can generate realistic big artificial traffic flow data and use small real traffic data and synthesized traffic data in traffic data mining tasks. In this paper, we focus on discovering the semantics embedded in latent codes which are fed into Generative Adversarial Networks, and propose to use the interpolation of semantic latent code to generate semantic manipulation of traffic flow. We evaluate our approach using the publicly available data from Caltrans Performance Measurements Systems (PeMS), and experimental results show the the effectiveness of the proposed method." @default.
- W3208302364 created "2021-11-08" @default.
- W3208302364 creator A5042359485 @default.
- W3208302364 creator A5062178734 @default.
- W3208302364 creator A5074160086 @default.
- W3208302364 date "2021-09-19" @default.
- W3208302364 modified "2023-09-24" @default.
- W3208302364 title "Traffic Flow Synthesis Using Generative Adversarial Networks via Semantic Latent Codes Manipulation" @default.
- W3208302364 cites W2036785686 @default.
- W3208302364 cites W2125389028 @default.
- W3208302364 cites W2133747588 @default.
- W3208302364 cites W2140051110 @default.
- W3208302364 cites W2176149189 @default.
- W3208302364 cites W2298992465 @default.
- W3208302364 cites W2434741482 @default.
- W3208302364 cites W2563738891 @default.
- W3208302364 cites W2585630030 @default.
- W3208302364 cites W2738588019 @default.
- W3208302364 cites W2739748921 @default.
- W3208302364 cites W2783478760 @default.
- W3208302364 cites W2892986943 @default.
- W3208302364 cites W2899676184 @default.
- W3208302364 cites W2941466173 @default.
- W3208302364 cites W2962879692 @default.
- W3208302364 cites W2964024144 @default.
- W3208302364 cites W2964268978 @default.
- W3208302364 cites W2988486362 @default.
- W3208302364 cites W2994901268 @default.
- W3208302364 cites W3022070552 @default.
- W3208302364 cites W3034523045 @default.
- W3208302364 cites W3034954643 @default.
- W3208302364 cites W3080189793 @default.
- W3208302364 cites W3106027755 @default.
- W3208302364 cites W3114719210 @default.
- W3208302364 cites W3131526619 @default.
- W3208302364 cites W3139065837 @default.
- W3208302364 doi "https://doi.org/10.1109/itsc48978.2021.9564752" @default.
- W3208302364 hasPublicationYear "2021" @default.
- W3208302364 type Work @default.
- W3208302364 sameAs 3208302364 @default.
- W3208302364 citedByCount "0" @default.
- W3208302364 crossrefType "proceedings-article" @default.
- W3208302364 hasAuthorship W3208302364A5042359485 @default.
- W3208302364 hasAuthorship W3208302364A5062178734 @default.
- W3208302364 hasAuthorship W3208302364A5074160086 @default.
- W3208302364 hasConcept C108583219 @default.
- W3208302364 hasConcept C114809511 @default.
- W3208302364 hasConcept C119857082 @default.
- W3208302364 hasConcept C120665830 @default.
- W3208302364 hasConcept C121332964 @default.
- W3208302364 hasConcept C124101348 @default.
- W3208302364 hasConcept C126255220 @default.
- W3208302364 hasConcept C154945302 @default.
- W3208302364 hasConcept C177264268 @default.
- W3208302364 hasConcept C184337299 @default.
- W3208302364 hasConcept C192209626 @default.
- W3208302364 hasConcept C199360897 @default.
- W3208302364 hasConcept C207512268 @default.
- W3208302364 hasConcept C2776760102 @default.
- W3208302364 hasConcept C2988773926 @default.
- W3208302364 hasConcept C31258907 @default.
- W3208302364 hasConcept C33923547 @default.
- W3208302364 hasConcept C37736160 @default.
- W3208302364 hasConcept C39890363 @default.
- W3208302364 hasConcept C41008148 @default.
- W3208302364 hasConcept C67186912 @default.
- W3208302364 hasConcept C75684735 @default.
- W3208302364 hasConcept C77088390 @default.
- W3208302364 hasConceptScore W3208302364C108583219 @default.
- W3208302364 hasConceptScore W3208302364C114809511 @default.
- W3208302364 hasConceptScore W3208302364C119857082 @default.
- W3208302364 hasConceptScore W3208302364C120665830 @default.
- W3208302364 hasConceptScore W3208302364C121332964 @default.
- W3208302364 hasConceptScore W3208302364C124101348 @default.
- W3208302364 hasConceptScore W3208302364C126255220 @default.
- W3208302364 hasConceptScore W3208302364C154945302 @default.
- W3208302364 hasConceptScore W3208302364C177264268 @default.
- W3208302364 hasConceptScore W3208302364C184337299 @default.
- W3208302364 hasConceptScore W3208302364C192209626 @default.
- W3208302364 hasConceptScore W3208302364C199360897 @default.
- W3208302364 hasConceptScore W3208302364C207512268 @default.
- W3208302364 hasConceptScore W3208302364C2776760102 @default.
- W3208302364 hasConceptScore W3208302364C2988773926 @default.
- W3208302364 hasConceptScore W3208302364C31258907 @default.
- W3208302364 hasConceptScore W3208302364C33923547 @default.
- W3208302364 hasConceptScore W3208302364C37736160 @default.
- W3208302364 hasConceptScore W3208302364C39890363 @default.
- W3208302364 hasConceptScore W3208302364C41008148 @default.
- W3208302364 hasConceptScore W3208302364C67186912 @default.
- W3208302364 hasConceptScore W3208302364C75684735 @default.
- W3208302364 hasConceptScore W3208302364C77088390 @default.
- W3208302364 hasFunder F4320321001 @default.
- W3208302364 hasLocation W32083023641 @default.
- W3208302364 hasOpenAccess W3208302364 @default.
- W3208302364 hasPrimaryLocation W32083023641 @default.
- W3208302364 hasRelatedWork W3000617323 @default.
- W3208302364 hasRelatedWork W3014300295 @default.
- W3208302364 hasRelatedWork W3024390022 @default.
- W3208302364 hasRelatedWork W3156291593 @default.
- W3208302364 hasRelatedWork W3189515467 @default.