Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208306711> ?p ?o ?g. }
- W3208306711 endingPage "105683" @default.
- W3208306711 startingPage "105683" @default.
- W3208306711 abstract "In present study, the nano-material flow of Ree-Eyring fluid model (NF-REFM) is examined by utilizing the technique of Levenberg Marquardt with backpropagated neural networks (TLM-BNNs). The flow is examined between two disks and the impacts of porosity and velocity slip are also analyzed. The partial differential equations (PDEs) representing the NF-REFM are transformed into system of ordinary differential equations (ODEs). Homotopy analysis method (HAM) is used to solve the ODEs and interpret the reference dataset for TLM-BNN. This dataset helps to compute the approximated solution of NF-REFM in MATLAB software. Regression analysis, Error histogram and MSE results, validates the performance of TLM-BNN. The flow effects on the velocity profile, temperature distribution and concentration profile are examined for different parameters. The results for entropy generation, Bejan number, Nusselt number, Sherwood number and skin friction coefficient are also discussed in this article." @default.
- W3208306711 created "2021-11-08" @default.
- W3208306711 creator A5020392083 @default.
- W3208306711 creator A5050154528 @default.
- W3208306711 creator A5057525661 @default.
- W3208306711 creator A5060111963 @default.
- W3208306711 creator A5060841915 @default.
- W3208306711 creator A5069175841 @default.
- W3208306711 creator A5080585392 @default.
- W3208306711 date "2021-12-01" @default.
- W3208306711 modified "2023-10-11" @default.
- W3208306711 title "Ohmic heating effects and entropy generation for nanofluidic system of Ree-Eyring fluid: Intelligent computing paradigm" @default.
- W3208306711 cites W1988308975 @default.
- W3208306711 cites W2160492816 @default.
- W3208306711 cites W2172105101 @default.
- W3208306711 cites W2195768166 @default.
- W3208306711 cites W2595621167 @default.
- W3208306711 cites W2596668708 @default.
- W3208306711 cites W2748959443 @default.
- W3208306711 cites W2793928343 @default.
- W3208306711 cites W2953464213 @default.
- W3208306711 cites W2969854979 @default.
- W3208306711 cites W2995720307 @default.
- W3208306711 cites W2996069601 @default.
- W3208306711 cites W3036631204 @default.
- W3208306711 cites W3047623305 @default.
- W3208306711 cites W3084527880 @default.
- W3208306711 cites W3093175864 @default.
- W3208306711 cites W3094858401 @default.
- W3208306711 cites W3096228634 @default.
- W3208306711 cites W3109534075 @default.
- W3208306711 cites W3112173448 @default.
- W3208306711 cites W3139000130 @default.
- W3208306711 cites W3142934400 @default.
- W3208306711 cites W3146459518 @default.
- W3208306711 cites W3154061953 @default.
- W3208306711 cites W3154811775 @default.
- W3208306711 cites W3158639929 @default.
- W3208306711 cites W3159178679 @default.
- W3208306711 cites W3160614929 @default.
- W3208306711 cites W3168207525 @default.
- W3208306711 cites W3170632766 @default.
- W3208306711 cites W3182998852 @default.
- W3208306711 cites W3184263678 @default.
- W3208306711 cites W3184995139 @default.
- W3208306711 cites W3193784130 @default.
- W3208306711 doi "https://doi.org/10.1016/j.icheatmasstransfer.2021.105683" @default.
- W3208306711 hasPublicationYear "2021" @default.
- W3208306711 type Work @default.
- W3208306711 sameAs 3208306711 @default.
- W3208306711 citedByCount "67" @default.
- W3208306711 countsByYear W32083067112021 @default.
- W3208306711 countsByYear W32083067112022 @default.
- W3208306711 countsByYear W32083067112023 @default.
- W3208306711 crossrefType "journal-article" @default.
- W3208306711 hasAuthorship W3208306711A5020392083 @default.
- W3208306711 hasAuthorship W3208306711A5050154528 @default.
- W3208306711 hasAuthorship W3208306711A5057525661 @default.
- W3208306711 hasAuthorship W3208306711A5060111963 @default.
- W3208306711 hasAuthorship W3208306711A5060841915 @default.
- W3208306711 hasAuthorship W3208306711A5069175841 @default.
- W3208306711 hasAuthorship W3208306711A5080585392 @default.
- W3208306711 hasConcept C111919701 @default.
- W3208306711 hasConcept C119103248 @default.
- W3208306711 hasConcept C121332964 @default.
- W3208306711 hasConcept C130230704 @default.
- W3208306711 hasConcept C134306372 @default.
- W3208306711 hasConcept C154945302 @default.
- W3208306711 hasConcept C173636693 @default.
- W3208306711 hasConcept C181587685 @default.
- W3208306711 hasConcept C182748727 @default.
- W3208306711 hasConcept C192562407 @default.
- W3208306711 hasConcept C196558001 @default.
- W3208306711 hasConcept C202444582 @default.
- W3208306711 hasConcept C2780365114 @default.
- W3208306711 hasConcept C28826006 @default.
- W3208306711 hasConcept C33923547 @default.
- W3208306711 hasConcept C41008148 @default.
- W3208306711 hasConcept C43093850 @default.
- W3208306711 hasConcept C50644808 @default.
- W3208306711 hasConcept C51544822 @default.
- W3208306711 hasConcept C57879066 @default.
- W3208306711 hasConcept C5961521 @default.
- W3208306711 hasConcept C78045399 @default.
- W3208306711 hasConcept C93779851 @default.
- W3208306711 hasConceptScore W3208306711C111919701 @default.
- W3208306711 hasConceptScore W3208306711C119103248 @default.
- W3208306711 hasConceptScore W3208306711C121332964 @default.
- W3208306711 hasConceptScore W3208306711C130230704 @default.
- W3208306711 hasConceptScore W3208306711C134306372 @default.
- W3208306711 hasConceptScore W3208306711C154945302 @default.
- W3208306711 hasConceptScore W3208306711C173636693 @default.
- W3208306711 hasConceptScore W3208306711C181587685 @default.
- W3208306711 hasConceptScore W3208306711C182748727 @default.
- W3208306711 hasConceptScore W3208306711C192562407 @default.
- W3208306711 hasConceptScore W3208306711C196558001 @default.
- W3208306711 hasConceptScore W3208306711C202444582 @default.
- W3208306711 hasConceptScore W3208306711C2780365114 @default.