Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208342938> ?p ?o ?g. }
- W3208342938 abstract "The problem of rapid and automated detection of distinct market regimes is a topic of great interest to financial mathematicians and practitioners alike. In this paper, we outline an unsupervised learning algorithm for clustering financial time-series into a suitable number of temporal segments (market regimes). As a special case of the above, we develop a robust algorithm that automates the process of classifying market regimes. The method is robust in the sense that it does not depend on modelling assumptions of the underlying time series as our experiments with real datasets show. This method -- dubbed the Wasserstein $k$-means algorithm -- frames such a problem as one on the space of probability measures with finite $p^text{th}$ moment, in terms of the $p$-Wasserstein distance between (empirical) distributions. We compare our WK-means approach with a more traditional clustering algorithms by studying the so-called maximum mean discrepancy scores between, and within clusters. In both cases it is shown that the WK-means algorithm vastly outperforms all considered competitor approaches. We demonstrate the performance of all approaches both in a controlled environment on synthetic data, and on real data." @default.
- W3208342938 created "2021-11-08" @default.
- W3208342938 creator A5011490173 @default.
- W3208342938 creator A5055177598 @default.
- W3208342938 creator A5060392846 @default.
- W3208342938 date "2021-10-22" @default.
- W3208342938 modified "2023-09-27" @default.
- W3208342938 title "Clustering Market Regimes using the Wasserstein Distance" @default.
- W3208342938 cites W126423635 @default.
- W3208342938 cites W1522579744 @default.
- W3208342938 cites W1545370368 @default.
- W3208342938 cites W1565176583 @default.
- W3208342938 cites W1597587295 @default.
- W3208342938 cites W1639961155 @default.
- W3208342938 cites W1647376582 @default.
- W3208342938 cites W1978637569 @default.
- W3208342938 cites W1979494886 @default.
- W3208342938 cites W1982952634 @default.
- W3208342938 cites W1987971958 @default.
- W3208342938 cites W2011194241 @default.
- W3208342938 cites W2019106840 @default.
- W3208342938 cites W2029064186 @default.
- W3208342938 cites W2034182200 @default.
- W3208342938 cites W2051224630 @default.
- W3208342938 cites W2074812030 @default.
- W3208342938 cites W2087544865 @default.
- W3208342938 cites W2100011707 @default.
- W3208342938 cites W2100600008 @default.
- W3208342938 cites W2108762162 @default.
- W3208342938 cites W2110176078 @default.
- W3208342938 cites W2121133842 @default.
- W3208342938 cites W2125865219 @default.
- W3208342938 cites W2132512523 @default.
- W3208342938 cites W2147943944 @default.
- W3208342938 cites W2149229436 @default.
- W3208342938 cites W2152762434 @default.
- W3208342938 cites W2161160262 @default.
- W3208342938 cites W2161808462 @default.
- W3208342938 cites W2212660284 @default.
- W3208342938 cites W2231556222 @default.
- W3208342938 cites W2335301180 @default.
- W3208342938 cites W2342070830 @default.
- W3208342938 cites W2557283755 @default.
- W3208342938 cites W2809829633 @default.
- W3208342938 cites W2951338616 @default.
- W3208342938 cites W2963995333 @default.
- W3208342938 cites W2964275709 @default.
- W3208342938 cites W2970112944 @default.
- W3208342938 cites W3033521478 @default.
- W3208342938 cites W3091367389 @default.
- W3208342938 cites W3123143752 @default.
- W3208342938 cites W3123212095 @default.
- W3208342938 cites W3124532228 @default.
- W3208342938 cites W3125309539 @default.
- W3208342938 cites W3158954158 @default.
- W3208342938 cites W3167297489 @default.
- W3208342938 cites W3198435832 @default.
- W3208342938 cites W3211512758 @default.
- W3208342938 hasPublicationYear "2021" @default.
- W3208342938 type Work @default.
- W3208342938 sameAs 3208342938 @default.
- W3208342938 citedByCount "0" @default.
- W3208342938 crossrefType "posted-content" @default.
- W3208342938 hasAuthorship W3208342938A5011490173 @default.
- W3208342938 hasAuthorship W3208342938A5055177598 @default.
- W3208342938 hasAuthorship W3208342938A5060392846 @default.
- W3208342938 hasConcept C10138342 @default.
- W3208342938 hasConcept C111919701 @default.
- W3208342938 hasConcept C11413529 @default.
- W3208342938 hasConcept C121332964 @default.
- W3208342938 hasConcept C124101348 @default.
- W3208342938 hasConcept C143724316 @default.
- W3208342938 hasConcept C151730666 @default.
- W3208342938 hasConcept C154945302 @default.
- W3208342938 hasConcept C162324750 @default.
- W3208342938 hasConcept C179254644 @default.
- W3208342938 hasConcept C19244329 @default.
- W3208342938 hasConcept C2778572836 @default.
- W3208342938 hasConcept C41008148 @default.
- W3208342938 hasConcept C73555534 @default.
- W3208342938 hasConcept C74650414 @default.
- W3208342938 hasConcept C86803240 @default.
- W3208342938 hasConcept C98045186 @default.
- W3208342938 hasConceptScore W3208342938C10138342 @default.
- W3208342938 hasConceptScore W3208342938C111919701 @default.
- W3208342938 hasConceptScore W3208342938C11413529 @default.
- W3208342938 hasConceptScore W3208342938C121332964 @default.
- W3208342938 hasConceptScore W3208342938C124101348 @default.
- W3208342938 hasConceptScore W3208342938C143724316 @default.
- W3208342938 hasConceptScore W3208342938C151730666 @default.
- W3208342938 hasConceptScore W3208342938C154945302 @default.
- W3208342938 hasConceptScore W3208342938C162324750 @default.
- W3208342938 hasConceptScore W3208342938C179254644 @default.
- W3208342938 hasConceptScore W3208342938C19244329 @default.
- W3208342938 hasConceptScore W3208342938C2778572836 @default.
- W3208342938 hasConceptScore W3208342938C41008148 @default.
- W3208342938 hasConceptScore W3208342938C73555534 @default.
- W3208342938 hasConceptScore W3208342938C74650414 @default.
- W3208342938 hasConceptScore W3208342938C86803240 @default.
- W3208342938 hasConceptScore W3208342938C98045186 @default.