Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208343608> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3208343608 endingPage "974" @default.
- W3208343608 startingPage "935" @default.
- W3208343608 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a reductive algebraic group and let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Z> <mml:semantics> <mml:mi>Z</mml:mi> <mml:annotation encoding=application/x-tex>Z</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the stabilizer of a nilpotent element <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=e> <mml:semantics> <mml:mi>e</mml:mi> <mml:annotation encoding=application/x-tex>e</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the Lie algebra of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We consider the action of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Z> <mml:semantics> <mml:mi>Z</mml:mi> <mml:annotation encoding=application/x-tex>Z</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on the flag variety of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and we focus on the case where this action has a finite number of orbits (i.e., <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Z> <mml:semantics> <mml:mi>Z</mml:mi> <mml:annotation encoding=application/x-tex>Z</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a spherical subgroup). This holds for instance if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=e> <mml:semantics> <mml:mi>e</mml:mi> <mml:annotation encoding=application/x-tex>e</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has height <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=2> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=application/x-tex>2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this case we give a parametrization of the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Z> <mml:semantics> <mml:mi>Z</mml:mi> <mml:annotation encoding=application/x-tex>Z</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-orbits and we show that each <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Z> <mml:semantics> <mml:mi>Z</mml:mi> <mml:annotation encoding=application/x-tex>Z</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-orbit has a structure of algebraic affine bundle. In particular, in type <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we deduce that each orbit has a natural cell decomposition. In the aim to study the (strong) Bruhat order of the orbits, we define an abstract partial order on certain quotients associated to a Coxeter system. In type <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we show that the Bruhat order of the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Z> <mml:semantics> <mml:mi>Z</mml:mi> <mml:annotation encoding=application/x-tex>Z</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-orbits can be described in this way." @default.
- W3208343608 created "2021-11-08" @default.
- W3208343608 creator A5006718583 @default.
- W3208343608 creator A5051892265 @default.
- W3208343608 creator A5055845079 @default.
- W3208343608 date "2021-10-21" @default.
- W3208343608 modified "2023-09-25" @default.
- W3208343608 title "Parametrization, structure and Bruhat order of certain spherical quotients" @default.
- W3208343608 cites W1504774211 @default.
- W3208343608 cites W1567200859 @default.
- W3208343608 cites W1624850651 @default.
- W3208343608 cites W1971279730 @default.
- W3208343608 cites W1993837540 @default.
- W3208343608 cites W1999529321 @default.
- W3208343608 cites W2002710401 @default.
- W3208343608 cites W2006130337 @default.
- W3208343608 cites W2032898314 @default.
- W3208343608 cites W2055199585 @default.
- W3208343608 cites W2466138974 @default.
- W3208343608 cites W2898870492 @default.
- W3208343608 cites W2962792785 @default.
- W3208343608 cites W2991273408 @default.
- W3208343608 cites W3022078673 @default.
- W3208343608 cites W4243873478 @default.
- W3208343608 cites W4301870496 @default.
- W3208343608 doi "https://doi.org/10.1090/ert/584" @default.
- W3208343608 hasPublicationYear "2021" @default.
- W3208343608 type Work @default.
- W3208343608 sameAs 3208343608 @default.
- W3208343608 citedByCount "1" @default.
- W3208343608 countsByYear W32083436082022 @default.
- W3208343608 crossrefType "journal-article" @default.
- W3208343608 hasAuthorship W3208343608A5006718583 @default.
- W3208343608 hasAuthorship W3208343608A5051892265 @default.
- W3208343608 hasAuthorship W3208343608A5055845079 @default.
- W3208343608 hasBestOaLocation W32083436081 @default.
- W3208343608 hasConcept C11413529 @default.
- W3208343608 hasConcept C154945302 @default.
- W3208343608 hasConcept C18903297 @default.
- W3208343608 hasConcept C2776321320 @default.
- W3208343608 hasConcept C2777299769 @default.
- W3208343608 hasConcept C33923547 @default.
- W3208343608 hasConcept C41008148 @default.
- W3208343608 hasConcept C77088390 @default.
- W3208343608 hasConcept C86803240 @default.
- W3208343608 hasConceptScore W3208343608C11413529 @default.
- W3208343608 hasConceptScore W3208343608C154945302 @default.
- W3208343608 hasConceptScore W3208343608C18903297 @default.
- W3208343608 hasConceptScore W3208343608C2776321320 @default.
- W3208343608 hasConceptScore W3208343608C2777299769 @default.
- W3208343608 hasConceptScore W3208343608C33923547 @default.
- W3208343608 hasConceptScore W3208343608C41008148 @default.
- W3208343608 hasConceptScore W3208343608C77088390 @default.
- W3208343608 hasConceptScore W3208343608C86803240 @default.
- W3208343608 hasIssue "33" @default.
- W3208343608 hasLocation W32083436081 @default.
- W3208343608 hasLocation W32083436082 @default.
- W3208343608 hasLocation W32083436083 @default.
- W3208343608 hasLocation W32083436084 @default.
- W3208343608 hasOpenAccess W3208343608 @default.
- W3208343608 hasPrimaryLocation W32083436081 @default.
- W3208343608 hasRelatedWork W1529400504 @default.
- W3208343608 hasRelatedWork W1892467659 @default.
- W3208343608 hasRelatedWork W2045715842 @default.
- W3208343608 hasRelatedWork W2105880240 @default.
- W3208343608 hasRelatedWork W2349865494 @default.
- W3208343608 hasRelatedWork W2372553222 @default.
- W3208343608 hasRelatedWork W2808586768 @default.
- W3208343608 hasRelatedWork W2925832130 @default.
- W3208343608 hasRelatedWork W2998403542 @default.
- W3208343608 hasRelatedWork W3157620392 @default.
- W3208343608 hasVolume "25" @default.
- W3208343608 isParatext "false" @default.
- W3208343608 isRetracted "false" @default.
- W3208343608 magId "3208343608" @default.
- W3208343608 workType "article" @default.