Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208354798> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3208354798 endingPage "7631" @default.
- W3208354798 startingPage "7623" @default.
- W3208354798 abstract "This work evaluated a new radiotherapy target-generating framework (the αTarget algorithm) for creating internal target volumes for lung SBRT.Nineteen patients previously treated with definitive intent SBRT to the lung were identified from a clinical database. For each patient's 4DCT simulation scan, deformable image registration was used between phases of the scan in order to generate voxelized models of motion for 35 individual gross tumor volumes. These motion models were then used with a new implementation of a previously described target-generating algorithm to create new internal target volumes (αITVs). The resulting αITVs were analyzed with respect to their volume and the coverage they provided each tumor voxel per that voxel's motion model. The clinically used ITVs were similarly analyzed, and were then compared to the αITVs using paired Student's t-tests. In addition, isotropic margins were added to the αITVs in order to determine the largest margin magnitude that could be added without exceeding the volume of the clinical ITVs.The αITVs increased the target coverage provided to each tumor's 5th-percentile-most-covered-voxel an average of 50.3% compared to the clinical ITVs (p < 0.0001). At the same time, the αITVs had volumes that were, on average, 31.4% smaller (p < 0.0001). The differences in volume were large enough that, on average, an extra 2 mm isotropic margin could be added to the αITV before it had a volume greater than the clinical ITV.The αTarget algorithm can generate more effective lung SBRT internal target volumes that provide greater coverage with smaller volumes. In combination with numerous other advantages of the framework, this effectiveness makes the αTarget algorithm a powerful new method for advanced IGRT or adaptive radiotherapy techniques." @default.
- W3208354798 created "2021-11-08" @default.
- W3208354798 creator A5022547596 @default.
- W3208354798 creator A5052168030 @default.
- W3208354798 creator A5084405974 @default.
- W3208354798 date "2021-11-13" @default.
- W3208354798 modified "2023-09-27" @default.
- W3208354798 title "Application of an automatic, uncertainty model‐guided, target‐generating algorithm to lung stereotactic body radiotherapy" @default.
- W3208354798 cites W1558558113 @default.
- W3208354798 cites W1996484856 @default.
- W3208354798 cites W1999488241 @default.
- W3208354798 cites W2000629071 @default.
- W3208354798 cites W2008483189 @default.
- W3208354798 cites W2016570718 @default.
- W3208354798 cites W2025633794 @default.
- W3208354798 cites W2035995899 @default.
- W3208354798 cites W2042430294 @default.
- W3208354798 cites W2044592134 @default.
- W3208354798 cites W2049691758 @default.
- W3208354798 cites W2074813252 @default.
- W3208354798 cites W2088617308 @default.
- W3208354798 cites W2090688261 @default.
- W3208354798 cites W2103692418 @default.
- W3208354798 cites W2122062060 @default.
- W3208354798 cites W2126680055 @default.
- W3208354798 cites W2142143971 @default.
- W3208354798 cites W2161674690 @default.
- W3208354798 cites W2162754892 @default.
- W3208354798 cites W2168271013 @default.
- W3208354798 cites W2561213003 @default.
- W3208354798 cites W2594189057 @default.
- W3208354798 cites W2891968673 @default.
- W3208354798 cites W3014942493 @default.
- W3208354798 cites W3072530867 @default.
- W3208354798 cites W3102647929 @default.
- W3208354798 cites W3122846855 @default.
- W3208354798 cites W3172891127 @default.
- W3208354798 doi "https://doi.org/10.1002/mp.15323" @default.
- W3208354798 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34726271" @default.
- W3208354798 hasPublicationYear "2021" @default.
- W3208354798 type Work @default.
- W3208354798 sameAs 3208354798 @default.
- W3208354798 citedByCount "0" @default.
- W3208354798 crossrefType "journal-article" @default.
- W3208354798 hasAuthorship W3208354798A5022547596 @default.
- W3208354798 hasAuthorship W3208354798A5052168030 @default.
- W3208354798 hasAuthorship W3208354798A5084405974 @default.
- W3208354798 hasConcept C119857082 @default.
- W3208354798 hasConcept C126838900 @default.
- W3208354798 hasConcept C19527891 @default.
- W3208354798 hasConcept C2989005 @default.
- W3208354798 hasConcept C41008148 @default.
- W3208354798 hasConcept C54170458 @default.
- W3208354798 hasConcept C71924100 @default.
- W3208354798 hasConcept C774472 @default.
- W3208354798 hasConceptScore W3208354798C119857082 @default.
- W3208354798 hasConceptScore W3208354798C126838900 @default.
- W3208354798 hasConceptScore W3208354798C19527891 @default.
- W3208354798 hasConceptScore W3208354798C2989005 @default.
- W3208354798 hasConceptScore W3208354798C41008148 @default.
- W3208354798 hasConceptScore W3208354798C54170458 @default.
- W3208354798 hasConceptScore W3208354798C71924100 @default.
- W3208354798 hasConceptScore W3208354798C774472 @default.
- W3208354798 hasIssue "12" @default.
- W3208354798 hasLocation W32083547981 @default.
- W3208354798 hasLocation W32083547982 @default.
- W3208354798 hasOpenAccess W3208354798 @default.
- W3208354798 hasPrimaryLocation W32083547981 @default.
- W3208354798 hasRelatedWork W1987436075 @default.
- W3208354798 hasRelatedWork W1988377681 @default.
- W3208354798 hasRelatedWork W1998058979 @default.
- W3208354798 hasRelatedWork W2021605236 @default.
- W3208354798 hasRelatedWork W2028895886 @default.
- W3208354798 hasRelatedWork W2049214470 @default.
- W3208354798 hasRelatedWork W2169304117 @default.
- W3208354798 hasRelatedWork W2792210679 @default.
- W3208354798 hasRelatedWork W2902148150 @default.
- W3208354798 hasRelatedWork W82911730 @default.
- W3208354798 hasVolume "48" @default.
- W3208354798 isParatext "false" @default.
- W3208354798 isRetracted "false" @default.
- W3208354798 magId "3208354798" @default.
- W3208354798 workType "article" @default.