Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208361844> ?p ?o ?g. }
- W3208361844 endingPage "733" @default.
- W3208361844 startingPage "733" @default.
- W3208361844 abstract "With cities reinforcing greener ways of urban mobility, encouraging urban cycling helps to reduce the number of motorized vehicles on the streets. However, that also leads to a significant increase in the number of bicycles in urban areas, making the question of planning the cycling infrastructure an important topic. In this paper, we introduce a new method for analyzing the demand for bicycle parking facilities in urban areas based on object detection of social media images. We use a subset of the YFCC100m dataset, a collection of posts from the social media platform Flickr, and utilize a state-of-the-art object detection algorithm to detect and classify moving and parked bicycles in the city of Dresden, Germany. We were able to retrieve the vast majority of bicycles while generating few false positives and classify them as either moving or stationary. We then conducted a case study in which we compare areas with a high density of parked bicycles with the number of currently available parking spots in the same areas and identify potential locations where new bicycle parking facilities can be introduced. With the results of the case study, we show that our approach is a useful additional data source for urban bicycle infrastructure planning because it provides information that is otherwise hard to obtain." @default.
- W3208361844 created "2021-11-08" @default.
- W3208361844 creator A5002211732 @default.
- W3208361844 creator A5007590445 @default.
- W3208361844 creator A5016611340 @default.
- W3208361844 creator A5035308938 @default.
- W3208361844 creator A5040412734 @default.
- W3208361844 creator A5072563101 @default.
- W3208361844 date "2021-10-28" @default.
- W3208361844 modified "2023-10-14" @default.
- W3208361844 title "Using Object Detection on Social Media Images for Urban Bicycle Infrastructure Planning: A Case Study of Dresden" @default.
- W3208361844 cites W1529764152 @default.
- W3208361844 cites W1759766770 @default.
- W3208361844 cites W1892081045 @default.
- W3208361844 cites W1922048647 @default.
- W3208361844 cites W1972189565 @default.
- W3208361844 cites W2039884997 @default.
- W3208361844 cites W2055741674 @default.
- W3208361844 cites W2099695159 @default.
- W3208361844 cites W2104869273 @default.
- W3208361844 cites W2141236502 @default.
- W3208361844 cites W2149423213 @default.
- W3208361844 cites W2155431733 @default.
- W3208361844 cites W2164133872 @default.
- W3208361844 cites W2222512263 @default.
- W3208361844 cites W2250384498 @default.
- W3208361844 cites W2485451845 @default.
- W3208361844 cites W2529611746 @default.
- W3208361844 cites W2565492514 @default.
- W3208361844 cites W2576901124 @default.
- W3208361844 cites W2588695369 @default.
- W3208361844 cites W2618530766 @default.
- W3208361844 cites W2729416375 @default.
- W3208361844 cites W2732026016 @default.
- W3208361844 cites W2742970053 @default.
- W3208361844 cites W2746311242 @default.
- W3208361844 cites W2753974954 @default.
- W3208361844 cites W2796495817 @default.
- W3208361844 cites W2796723621 @default.
- W3208361844 cites W2807686848 @default.
- W3208361844 cites W2901545557 @default.
- W3208361844 cites W2901558138 @default.
- W3208361844 cites W2918051200 @default.
- W3208361844 cites W2946749442 @default.
- W3208361844 cites W2947466183 @default.
- W3208361844 cites W2962857818 @default.
- W3208361844 cites W2981257919 @default.
- W3208361844 cites W2999815819 @default.
- W3208361844 cites W3004370189 @default.
- W3208361844 cites W3010736767 @default.
- W3208361844 cites W3011147769 @default.
- W3208361844 cites W3012528020 @default.
- W3208361844 cites W3036144490 @default.
- W3208361844 cites W3040097175 @default.
- W3208361844 cites W3042483072 @default.
- W3208361844 cites W3089356954 @default.
- W3208361844 cites W3093030249 @default.
- W3208361844 cites W3093952168 @default.
- W3208361844 cites W3107133835 @default.
- W3208361844 cites W3108136365 @default.
- W3208361844 cites W3124255880 @default.
- W3208361844 cites W3194717903 @default.
- W3208361844 doi "https://doi.org/10.3390/ijgi10110733" @default.
- W3208361844 hasPublicationYear "2021" @default.
- W3208361844 type Work @default.
- W3208361844 sameAs 3208361844 @default.
- W3208361844 citedByCount "5" @default.
- W3208361844 countsByYear W32083618442022 @default.
- W3208361844 countsByYear W32083618442023 @default.
- W3208361844 crossrefType "journal-article" @default.
- W3208361844 hasAuthorship W3208361844A5002211732 @default.
- W3208361844 hasAuthorship W3208361844A5007590445 @default.
- W3208361844 hasAuthorship W3208361844A5016611340 @default.
- W3208361844 hasAuthorship W3208361844A5035308938 @default.
- W3208361844 hasAuthorship W3208361844A5040412734 @default.
- W3208361844 hasAuthorship W3208361844A5072563101 @default.
- W3208361844 hasBestOaLocation W32083618441 @default.
- W3208361844 hasConcept C127413603 @default.
- W3208361844 hasConcept C136264566 @default.
- W3208361844 hasConcept C136764020 @default.
- W3208361844 hasConcept C147176958 @default.
- W3208361844 hasConcept C154945302 @default.
- W3208361844 hasConcept C162324750 @default.
- W3208361844 hasConcept C166957645 @default.
- W3208361844 hasConcept C205649164 @default.
- W3208361844 hasConcept C22212356 @default.
- W3208361844 hasConcept C2778368647 @default.
- W3208361844 hasConcept C2781238097 @default.
- W3208361844 hasConcept C41008148 @default.
- W3208361844 hasConcept C49545453 @default.
- W3208361844 hasConcept C518677369 @default.
- W3208361844 hasConcept C541528975 @default.
- W3208361844 hasConcept C64869954 @default.
- W3208361844 hasConceptScore W3208361844C127413603 @default.
- W3208361844 hasConceptScore W3208361844C136264566 @default.
- W3208361844 hasConceptScore W3208361844C136764020 @default.
- W3208361844 hasConceptScore W3208361844C147176958 @default.
- W3208361844 hasConceptScore W3208361844C154945302 @default.