Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208363492> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3208363492 abstract "Author(s): Hu, Hanbin | Advisor(s): Li, Peng | Abstract: Due to inherent complex behaviors and stringent requirements in analog and mixed-signal (AMS) systems, verification and testing become key bottlenecks in the product development cycle. Rare failure detection in a high-dimensional parameter space using minimal expensive simulation/measurement data is a major challenge. For rare failure detection in the verification flow, this dissertation proposes to put machine learning models, that mimic the circuit behavior, under verification, which greatly relaxes the simulation/measurement requirements and improves the verification efficiency.We first present a hybrid formal/machine-learning verification technique (HFMV) to combine the best of the two worlds. HFMV adds formalism on the top of a probabilistic learning model while providing a sense of coverage for extremely rare failure detection. On the other hand, we also study Bayesian optimization (BO) based approaches to the challenging problem of verifying AMS circuits with stringent low failure requirements. We simultaneously leverage multiple optimized acquisition functions to explore varying degrees of balancing between exploitation and exploration. Furthermore, this dissertation proposes a BO framework under high dimensional space to further improve the verification efficiency. Two techniques are explored here: 1) random embedding to linearly embed input into a low dimensional space and 2) sensor fusion networks to identify important nonlinear features transformed by reversible neural networks. The proposed approaches are very effective in finding very rare failures in high dimensional space which existing statistical techniques can miss.On the subject of AMS testing, this dissertation proposes to utilize self-supervised learning methods to detect extremely rare customer failure. First, we study a transformation-based self-labeling technique to reliably screen out rare customer return defects. The normality score to an unseen input data is the goodness of the multi-class classification model trained by self-labeled data via a set of reversible transformations. Furthermore, this dissertation suggests a contrastive learning framework for semi-supervised learning and prediction of wafer map patterns. Contrastive learning is applied for the unsupervised encoder representation learning supported by augmented data generated by different transformations (views) of wafer maps. Experimental results demonstrate that the self-supervised learning framework greatly improves test accuracy compared to traditional supervised methods." @default.
- W3208363492 created "2021-11-08" @default.
- W3208363492 creator A5073026003 @default.
- W3208363492 date "2021-01-01" @default.
- W3208363492 modified "2023-09-27" @default.
- W3208363492 title "Machine Learning Techniques for Rare Failure Detection in Analog and Mixed-Signal Verification and Test" @default.
- W3208363492 hasPublicationYear "2021" @default.
- W3208363492 type Work @default.
- W3208363492 sameAs 3208363492 @default.
- W3208363492 citedByCount "0" @default.
- W3208363492 crossrefType "journal-article" @default.
- W3208363492 hasAuthorship W3208363492A5073026003 @default.
- W3208363492 hasConcept C111498074 @default.
- W3208363492 hasConcept C113775141 @default.
- W3208363492 hasConcept C11413529 @default.
- W3208363492 hasConcept C119857082 @default.
- W3208363492 hasConcept C136886441 @default.
- W3208363492 hasConcept C144024400 @default.
- W3208363492 hasConcept C153083717 @default.
- W3208363492 hasConcept C154945302 @default.
- W3208363492 hasConcept C19165224 @default.
- W3208363492 hasConcept C41008148 @default.
- W3208363492 hasConcept C41608201 @default.
- W3208363492 hasConcept C49937458 @default.
- W3208363492 hasConcept C50644808 @default.
- W3208363492 hasConcept C62460635 @default.
- W3208363492 hasConceptScore W3208363492C111498074 @default.
- W3208363492 hasConceptScore W3208363492C113775141 @default.
- W3208363492 hasConceptScore W3208363492C11413529 @default.
- W3208363492 hasConceptScore W3208363492C119857082 @default.
- W3208363492 hasConceptScore W3208363492C136886441 @default.
- W3208363492 hasConceptScore W3208363492C144024400 @default.
- W3208363492 hasConceptScore W3208363492C153083717 @default.
- W3208363492 hasConceptScore W3208363492C154945302 @default.
- W3208363492 hasConceptScore W3208363492C19165224 @default.
- W3208363492 hasConceptScore W3208363492C41008148 @default.
- W3208363492 hasConceptScore W3208363492C41608201 @default.
- W3208363492 hasConceptScore W3208363492C49937458 @default.
- W3208363492 hasConceptScore W3208363492C50644808 @default.
- W3208363492 hasConceptScore W3208363492C62460635 @default.
- W3208363492 hasLocation W32083634921 @default.
- W3208363492 hasOpenAccess W3208363492 @default.
- W3208363492 hasPrimaryLocation W32083634921 @default.
- W3208363492 hasRelatedWork W1980201834 @default.
- W3208363492 hasRelatedWork W2126238368 @default.
- W3208363492 hasRelatedWork W2567299040 @default.
- W3208363492 hasRelatedWork W2602754294 @default.
- W3208363492 hasRelatedWork W2786492859 @default.
- W3208363492 hasRelatedWork W2914277910 @default.
- W3208363492 hasRelatedWork W2949572336 @default.
- W3208363492 hasRelatedWork W2949876623 @default.
- W3208363492 hasRelatedWork W2968493008 @default.
- W3208363492 hasRelatedWork W2972425461 @default.
- W3208363492 hasRelatedWork W3005469290 @default.
- W3208363492 hasRelatedWork W3015849740 @default.
- W3208363492 hasRelatedWork W3019822206 @default.
- W3208363492 hasRelatedWork W3022558733 @default.
- W3208363492 hasRelatedWork W3043298599 @default.
- W3208363492 hasRelatedWork W3103391706 @default.
- W3208363492 hasRelatedWork W3143552608 @default.
- W3208363492 hasRelatedWork W3175829250 @default.
- W3208363492 hasRelatedWork W3184049905 @default.
- W3208363492 hasRelatedWork W3118389281 @default.
- W3208363492 isParatext "false" @default.
- W3208363492 isRetracted "false" @default.
- W3208363492 magId "3208363492" @default.
- W3208363492 workType "article" @default.