Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208364069> ?p ?o ?g. }
- W3208364069 endingPage "18" @default.
- W3208364069 startingPage "1" @default.
- W3208364069 abstract "Remote sensing ship recognition is widely used in civil and military applications, such as national defense construction, fishery management, and navigation supervision. Unfortunately, limited by the lack of public datasets for fine-grained ship recognition, current studies mainly focus on ship detection or coarse-grained ship recognition, whereas fine-grained recognition task is left out. The main challenges for fine-grained ship recognition include: 1) complex scenes and 2) ship characteristics of arbitrary orientation, dense distribution, and huge scale and appearance variation. Aiming at the challenges above, we propose a novel efficient information reuse network (EIRNet) and establish a public 20-class Dataset for Oriented Ship Recognition (DOSR). In our EIRNet, considering recognition robustness to multiscale ships, a dense feature fusion network (DFF-Net) with two fusion directions is designed to maximize the utilization of multilayer information and reduce information redundancy. Then, the fused feature maps are refined by a dual-mask attention module (DMAM) to improve performance in dense and clutter scenes by enhancing the distinction between ships and suppressing clutter. Furthermore, Mask-RPN improves the efficiency of generating proposals by reusing the attention mask. Finally, we introduce a concept of upper level class to mine interclass relationships, which further improves the recognition accuracy. Extensive experiments demonstrate that our EIRNet achieves state-of-the-art performance on DOSR and another popular public dataset called HRSC2016." @default.
- W3208364069 created "2021-11-08" @default.
- W3208364069 creator A5001133387 @default.
- W3208364069 creator A5016112252 @default.
- W3208364069 creator A5058565205 @default.
- W3208364069 creator A5079918191 @default.
- W3208364069 date "2022-01-01" @default.
- W3208364069 modified "2023-10-18" @default.
- W3208364069 title "Fine-Grained Recognition for Oriented Ship Against Complex Scenes in Optical Remote Sensing Images" @default.
- W3208364069 cites W1970782782 @default.
- W3208364069 cites W1977895763 @default.
- W3208364069 cites W2005368619 @default.
- W3208364069 cites W2019304481 @default.
- W3208364069 cites W2026336948 @default.
- W3208364069 cites W2056522964 @default.
- W3208364069 cites W2064094295 @default.
- W3208364069 cites W2097117768 @default.
- W3208364069 cites W2131116417 @default.
- W3208364069 cites W2140309276 @default.
- W3208364069 cites W2194775991 @default.
- W3208364069 cites W2510991952 @default.
- W3208364069 cites W2538041617 @default.
- W3208364069 cites W2565639579 @default.
- W3208364069 cites W2567535626 @default.
- W3208364069 cites W2594177559 @default.
- W3208364069 cites W2625829240 @default.
- W3208364069 cites W2752782242 @default.
- W3208364069 cites W2799646862 @default.
- W3208364069 cites W2890133123 @default.
- W3208364069 cites W2899594603 @default.
- W3208364069 cites W2901743919 @default.
- W3208364069 cites W2921709033 @default.
- W3208364069 cites W2922509574 @default.
- W3208364069 cites W2935079508 @default.
- W3208364069 cites W2962749812 @default.
- W3208364069 cites W2963037989 @default.
- W3208364069 cites W2963091558 @default.
- W3208364069 cites W2963163009 @default.
- W3208364069 cites W2963351448 @default.
- W3208364069 cites W2963446712 @default.
- W3208364069 cites W2963691377 @default.
- W3208364069 cites W2963857746 @default.
- W3208364069 cites W2964121718 @default.
- W3208364069 cites W2964444661 @default.
- W3208364069 cites W2968090415 @default.
- W3208364069 cites W2975506318 @default.
- W3208364069 cites W2981903848 @default.
- W3208364069 cites W2982770724 @default.
- W3208364069 cites W2987200931 @default.
- W3208364069 cites W2991359031 @default.
- W3208364069 cites W2991363140 @default.
- W3208364069 cites W2992240579 @default.
- W3208364069 cites W2998213886 @default.
- W3208364069 cites W3004372116 @default.
- W3208364069 cites W3013723079 @default.
- W3208364069 cites W3016244469 @default.
- W3208364069 cites W3022548607 @default.
- W3208364069 cites W3024748887 @default.
- W3208364069 cites W3034971973 @default.
- W3208364069 cites W3106228955 @default.
- W3208364069 cites W3110971880 @default.
- W3208364069 cites W3117374221 @default.
- W3208364069 cites W3167254480 @default.
- W3208364069 cites W3170033848 @default.
- W3208364069 cites W639708223 @default.
- W3208364069 doi "https://doi.org/10.1109/tgrs.2021.3123666" @default.
- W3208364069 hasPublicationYear "2022" @default.
- W3208364069 type Work @default.
- W3208364069 sameAs 3208364069 @default.
- W3208364069 citedByCount "14" @default.
- W3208364069 countsByYear W32083640692022 @default.
- W3208364069 countsByYear W32083640692023 @default.
- W3208364069 crossrefType "journal-article" @default.
- W3208364069 hasAuthorship W3208364069A5001133387 @default.
- W3208364069 hasAuthorship W3208364069A5016112252 @default.
- W3208364069 hasAuthorship W3208364069A5058565205 @default.
- W3208364069 hasAuthorship W3208364069A5079918191 @default.
- W3208364069 hasConcept C104317684 @default.
- W3208364069 hasConcept C111919701 @default.
- W3208364069 hasConcept C127413603 @default.
- W3208364069 hasConcept C132094186 @default.
- W3208364069 hasConcept C138885662 @default.
- W3208364069 hasConcept C152124472 @default.
- W3208364069 hasConcept C153180895 @default.
- W3208364069 hasConcept C154945302 @default.
- W3208364069 hasConcept C185592680 @default.
- W3208364069 hasConcept C206588197 @default.
- W3208364069 hasConcept C2776401178 @default.
- W3208364069 hasConcept C41008148 @default.
- W3208364069 hasConcept C41895202 @default.
- W3208364069 hasConcept C52622490 @default.
- W3208364069 hasConcept C548081761 @default.
- W3208364069 hasConcept C554190296 @default.
- W3208364069 hasConcept C55493867 @default.
- W3208364069 hasConcept C63479239 @default.
- W3208364069 hasConcept C76155785 @default.
- W3208364069 hasConceptScore W3208364069C104317684 @default.
- W3208364069 hasConceptScore W3208364069C111919701 @default.