Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208365317> ?p ?o ?g. }
- W3208365317 endingPage "17860" @default.
- W3208365317 startingPage "17848" @default.
- W3208365317 abstract "Development of high-performance SrFeO3-δ-containing nanocomposites, which can be prepared by the Pechini method, for chemical-looping methane reforming is key to industrializing the chemical-looping reforming technique. To identify the importance of preparation parameters and screen the optimal ones with a relatively small number of experimental runs, an orthogonal experiment design was used in this work. The four parameters were the mole ratio of citrate to cations (CA/Me, factor A = 1, 2, and 3), the gelation temperature (factor B = 60, 80, and 100 °C), the cation concentration (factor C = 0.98, 0.49, and 0.33 mol/L), and the calcination temperature (factor D = 800, 1000, and 1200 °C). Regarding the specific surface area (SSA), the order of importance of the four factors is calcination temperature > CA/Me > gelation temperature > cation concentration. The sample prepared at a combination of A3B1C3D2 (3–60 °C–0.33 mol/L–1000 °C) has the largest SSA (28.25 m2/g), and high CA/Me ratios and low gelation temperatures result in big and porous particles. For nine nanocomposites, complete oxidation of methane occurs first, followed by partial oxidation of methane and then methane cracking at 950 °C and 1 atm in the reduction step of chemical-looping steam methane reforming. The first two reactions proceed until the lattice oxygen is depleted, but the last one takes place before the oxidation reactions are completed. As the redox cycle number increases, the first and last two reactions become insignificant. No combination can produce an oxygen carrier that exhibits high selectivity toward partial oxidation but low selectivity toward complete oxidation and methane cracking. Regarding methane conversion, syngas selectivity, and coke selectivity, the best combinations of CA/Me, gelation temperature, cation concentration, and calcination temperature are A2B1C1D1 (2–60 °C–0.98 mol/L–800 °C), A1B2C3D3 (1–80 °C–0.33 mol/L–1200 °C), and A3B3C2D3 (3–100 °C–0.49 mol/L–1200 °C), respectively. Concerning hydrogen purity in the oxidation step, the best combination is A3B3B3D3 (3–100 °C–0.33 mol/L–1200 °C)." @default.
- W3208365317 created "2021-11-08" @default.
- W3208365317 creator A5000568026 @default.
- W3208365317 creator A5033862576 @default.
- W3208365317 creator A5044301848 @default.
- W3208365317 creator A5047882464 @default.
- W3208365317 creator A5058215658 @default.
- W3208365317 creator A5079595728 @default.
- W3208365317 date "2021-10-25" @default.
- W3208365317 modified "2023-10-16" @default.
- W3208365317 title "Orthogonal Preparation of SrFeO<sub>3-δ</sub> Nanocomposites as Effective Oxygen Transfer Agents for Chemical-Looping Steam Methane Reforming" @default.
- W3208365317 cites W1970075082 @default.
- W3208365317 cites W2018830298 @default.
- W3208365317 cites W2022902757 @default.
- W3208365317 cites W2040345038 @default.
- W3208365317 cites W2062005376 @default.
- W3208365317 cites W2066317131 @default.
- W3208365317 cites W2066452965 @default.
- W3208365317 cites W2069660605 @default.
- W3208365317 cites W2218635931 @default.
- W3208365317 cites W2325685620 @default.
- W3208365317 cites W2327375591 @default.
- W3208365317 cites W2559241939 @default.
- W3208365317 cites W2605816135 @default.
- W3208365317 cites W2752071795 @default.
- W3208365317 cites W2802672813 @default.
- W3208365317 cites W2899527981 @default.
- W3208365317 cites W2903420606 @default.
- W3208365317 cites W2904588091 @default.
- W3208365317 cites W2908137304 @default.
- W3208365317 cites W2947053186 @default.
- W3208365317 cites W2947706495 @default.
- W3208365317 cites W2950986576 @default.
- W3208365317 cites W3002119706 @default.
- W3208365317 cites W3002139048 @default.
- W3208365317 cites W3016895692 @default.
- W3208365317 cites W3023545853 @default.
- W3208365317 cites W3034273537 @default.
- W3208365317 cites W3047583711 @default.
- W3208365317 cites W3047672969 @default.
- W3208365317 cites W3081645348 @default.
- W3208365317 cites W3082862057 @default.
- W3208365317 cites W3097596707 @default.
- W3208365317 cites W3101367811 @default.
- W3208365317 cites W3109925308 @default.
- W3208365317 cites W3127803982 @default.
- W3208365317 cites W3137539556 @default.
- W3208365317 doi "https://doi.org/10.1021/acs.energyfuels.1c02357" @default.
- W3208365317 hasPublicationYear "2021" @default.
- W3208365317 type Work @default.
- W3208365317 sameAs 3208365317 @default.
- W3208365317 citedByCount "2" @default.
- W3208365317 countsByYear W32083653172022 @default.
- W3208365317 crossrefType "journal-article" @default.
- W3208365317 hasAuthorship W3208365317A5000568026 @default.
- W3208365317 hasAuthorship W3208365317A5033862576 @default.
- W3208365317 hasAuthorship W3208365317A5044301848 @default.
- W3208365317 hasAuthorship W3208365317A5047882464 @default.
- W3208365317 hasAuthorship W3208365317A5058215658 @default.
- W3208365317 hasAuthorship W3208365317A5079595728 @default.
- W3208365317 hasConcept C110686534 @default.
- W3208365317 hasConcept C127413603 @default.
- W3208365317 hasConcept C158089330 @default.
- W3208365317 hasConcept C161790260 @default.
- W3208365317 hasConcept C178790620 @default.
- W3208365317 hasConcept C179104552 @default.
- W3208365317 hasConcept C185592680 @default.
- W3208365317 hasConcept C192562407 @default.
- W3208365317 hasConcept C202189072 @default.
- W3208365317 hasConcept C42360764 @default.
- W3208365317 hasConcept C43535742 @default.
- W3208365317 hasConcept C516920438 @default.
- W3208365317 hasConcept C540031477 @default.
- W3208365317 hasConcept C55904794 @default.
- W3208365317 hasConcept C7082614 @default.
- W3208365317 hasConcept C92880739 @default.
- W3208365317 hasConceptScore W3208365317C110686534 @default.
- W3208365317 hasConceptScore W3208365317C127413603 @default.
- W3208365317 hasConceptScore W3208365317C158089330 @default.
- W3208365317 hasConceptScore W3208365317C161790260 @default.
- W3208365317 hasConceptScore W3208365317C178790620 @default.
- W3208365317 hasConceptScore W3208365317C179104552 @default.
- W3208365317 hasConceptScore W3208365317C185592680 @default.
- W3208365317 hasConceptScore W3208365317C192562407 @default.
- W3208365317 hasConceptScore W3208365317C202189072 @default.
- W3208365317 hasConceptScore W3208365317C42360764 @default.
- W3208365317 hasConceptScore W3208365317C43535742 @default.
- W3208365317 hasConceptScore W3208365317C516920438 @default.
- W3208365317 hasConceptScore W3208365317C540031477 @default.
- W3208365317 hasConceptScore W3208365317C55904794 @default.
- W3208365317 hasConceptScore W3208365317C7082614 @default.
- W3208365317 hasConceptScore W3208365317C92880739 @default.
- W3208365317 hasFunder F4320321001 @default.
- W3208365317 hasFunder F4320329786 @default.
- W3208365317 hasIssue "21" @default.
- W3208365317 hasLocation W32083653171 @default.
- W3208365317 hasOpenAccess W3208365317 @default.
- W3208365317 hasPrimaryLocation W32083653171 @default.