Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208381609> ?p ?o ?g. }
- W3208381609 endingPage "19" @default.
- W3208381609 startingPage "1" @default.
- W3208381609 abstract "The uniaxial compressive strength (UCS) of rock is one of the essential data in engineering planning and design. Correctly testing UCS of rock to ensure its accuracy and authenticity is a prerequisite for assuring the design of any rock engineering project. UCS of rock has a broad range of applications in mining, geotechnical, petroleum, geomechanics, and other fields of engineering. The application of the gradient boosting machine learning algorithms has been rarely used, especially for UCS prediction, and has performed well, based on the relevant literature of the study. In this study, four gradient boosting machine learning algorithms, namely, gradient boosted regression (GBR), Catboost, light gradient boosting machine (LightGBM), and extreme gradient boosting (XGBoost), were developed to predict the UCS in MPa of soft sedimentary rocks of the Block-IX at Thar Coalfield, Pakistan, using four input variables such as wet density (ρw) in g/cm3; moisture in %; dry density (ρd) in g/cm3; and Brazilian tensile strength (BTS) in MPa. Then, 106-point dataset was allocated identically for each algorithm into 70% for the training phase and 30% for the testing phase. According to the results, the XGBoost algorithm outperformed the GBR, Catboost, and LightGBM with coefficient of correlation (R2) = 0.99, mean absolute error (MAE) = 0.00062, mean square error (MSE) = 0.0000006, and root mean square error (RMSE) = 0.00079 in the training phase and R2 = 0.99, MAE = 0.00054, MSE = 0.0000005, and RMSE = 0.00069 in the testing phase. The sensitivity analysis showed that BTS and ρw are positively correlated, and the moisture and ρd are negatively correlated with the UCS. Therefore, in this study, the XGBoost algorithm was shown to be the most accurate algorithm among all the investigated four algorithms for UCS prediction of soft sedimentary rocks of the Block-IX at Thar Coalfield, Pakistan." @default.
- W3208381609 created "2021-11-08" @default.
- W3208381609 creator A5036947251 @default.
- W3208381609 creator A5060611768 @default.
- W3208381609 creator A5065198955 @default.
- W3208381609 creator A5067299517 @default.
- W3208381609 creator A5082173143 @default.
- W3208381609 date "2021-11-01" @default.
- W3208381609 modified "2023-10-14" @default.
- W3208381609 title "Application of Gradient Boosting Machine Learning Algorithms to Predict Uniaxial Compressive Strength of Soft Sedimentary Rocks at Thar Coalfield" @default.
- W3208381609 cites W1157421975 @default.
- W3208381609 cites W1678356000 @default.
- W3208381609 cites W1964140585 @default.
- W3208381609 cites W1984921330 @default.
- W3208381609 cites W1985479415 @default.
- W3208381609 cites W1997086036 @default.
- W3208381609 cites W2009310824 @default.
- W3208381609 cites W2018909738 @default.
- W3208381609 cites W2021205107 @default.
- W3208381609 cites W2027161104 @default.
- W3208381609 cites W2032270680 @default.
- W3208381609 cites W2040076366 @default.
- W3208381609 cites W2047884674 @default.
- W3208381609 cites W2054491631 @default.
- W3208381609 cites W2056153762 @default.
- W3208381609 cites W2061521732 @default.
- W3208381609 cites W2070493638 @default.
- W3208381609 cites W2077901500 @default.
- W3208381609 cites W2124090653 @default.
- W3208381609 cites W2134286096 @default.
- W3208381609 cites W2151510828 @default.
- W3208381609 cites W2159974833 @default.
- W3208381609 cites W2168974883 @default.
- W3208381609 cites W2212869354 @default.
- W3208381609 cites W2226496742 @default.
- W3208381609 cites W2438062547 @default.
- W3208381609 cites W2511634359 @default.
- W3208381609 cites W2605727069 @default.
- W3208381609 cites W2629464472 @default.
- W3208381609 cites W2734692020 @default.
- W3208381609 cites W2888032441 @default.
- W3208381609 cites W2895122857 @default.
- W3208381609 cites W2905883682 @default.
- W3208381609 cites W2967114421 @default.
- W3208381609 cites W2972883610 @default.
- W3208381609 cites W3004732066 @default.
- W3208381609 cites W3011540643 @default.
- W3208381609 cites W3012807134 @default.
- W3208381609 cites W3023943971 @default.
- W3208381609 cites W3041093658 @default.
- W3208381609 cites W3044820569 @default.
- W3208381609 cites W3125236247 @default.
- W3208381609 cites W3132461592 @default.
- W3208381609 cites W3174987874 @default.
- W3208381609 cites W3184322671 @default.
- W3208381609 cites W3205807440 @default.
- W3208381609 doi "https://doi.org/10.1155/2021/2565488" @default.
- W3208381609 hasPublicationYear "2021" @default.
- W3208381609 type Work @default.
- W3208381609 sameAs 3208381609 @default.
- W3208381609 citedByCount "19" @default.
- W3208381609 countsByYear W32083816092022 @default.
- W3208381609 countsByYear W32083816092023 @default.
- W3208381609 crossrefType "journal-article" @default.
- W3208381609 hasAuthorship W3208381609A5036947251 @default.
- W3208381609 hasAuthorship W3208381609A5060611768 @default.
- W3208381609 hasAuthorship W3208381609A5065198955 @default.
- W3208381609 hasAuthorship W3208381609A5067299517 @default.
- W3208381609 hasAuthorship W3208381609A5082173143 @default.
- W3208381609 hasBestOaLocation W32083816091 @default.
- W3208381609 hasConcept C105795698 @default.
- W3208381609 hasConcept C11413529 @default.
- W3208381609 hasConcept C119857082 @default.
- W3208381609 hasConcept C127313418 @default.
- W3208381609 hasConcept C128990827 @default.
- W3208381609 hasConcept C139945424 @default.
- W3208381609 hasConcept C140073362 @default.
- W3208381609 hasConcept C154945302 @default.
- W3208381609 hasConcept C159985019 @default.
- W3208381609 hasConcept C169258074 @default.
- W3208381609 hasConcept C185715996 @default.
- W3208381609 hasConcept C187320778 @default.
- W3208381609 hasConcept C192562407 @default.
- W3208381609 hasConcept C30407753 @default.
- W3208381609 hasConcept C33923547 @default.
- W3208381609 hasConcept C41008148 @default.
- W3208381609 hasConcept C46686674 @default.
- W3208381609 hasConcept C50644808 @default.
- W3208381609 hasConcept C70153297 @default.
- W3208381609 hasConceptScore W3208381609C105795698 @default.
- W3208381609 hasConceptScore W3208381609C11413529 @default.
- W3208381609 hasConceptScore W3208381609C119857082 @default.
- W3208381609 hasConceptScore W3208381609C127313418 @default.
- W3208381609 hasConceptScore W3208381609C128990827 @default.
- W3208381609 hasConceptScore W3208381609C139945424 @default.
- W3208381609 hasConceptScore W3208381609C140073362 @default.
- W3208381609 hasConceptScore W3208381609C154945302 @default.
- W3208381609 hasConceptScore W3208381609C159985019 @default.