Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208391091> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3208391091 abstract "Classification of soil is crucial for the agricultural domain as it is an essential task in geology and engineering domains. Various procedures are proposed to classify soil types in the literature, but many of them consumed much time or required specially designed equipments/applications. Classification of soil involves the accounting of various factors due to its diversified nature. It can be observed that several critical domain-oriented decisions often depend on the type of soil like farmers might be benefitted from knowing the kind of soil to choose crops accordingly for cultivation. We have employed different Convolution Neural Network (CNN) architectures to identify the soil type accurately in real-time. This paper describes the comparative evaluation in terms of performances of various CNN architectures, namely, ResNet50, VGG19, MobileNetV2, VGG16, NASNetMobile, and InceptionV3. These CNN models are used to classify four types of soils: Clay, Black, Alluvial, and Red. The performance of the ResNet50 model is the best with a training accuracy and training loss of 99.47% and 0.0252, respectively compared to other competing models considered in this paper." @default.
- W3208391091 created "2021-11-08" @default.
- W3208391091 creator A5015385344 @default.
- W3208391091 creator A5027099057 @default.
- W3208391091 creator A5037688054 @default.
- W3208391091 creator A5054720572 @default.
- W3208391091 creator A5059353810 @default.
- W3208391091 creator A5062077743 @default.
- W3208391091 date "2021-10-15" @default.
- W3208391091 modified "2023-09-30" @default.
- W3208391091 title "Classification of Soil Images using Convolution Neural Networks" @default.
- W3208391091 cites W2531409750 @default.
- W3208391091 cites W2886752208 @default.
- W3208391091 cites W2963446712 @default.
- W3208391091 cites W2964121744 @default.
- W3208391091 cites W3005079959 @default.
- W3208391091 cites W3007157143 @default.
- W3208391091 cites W3024740627 @default.
- W3208391091 cites W3090980716 @default.
- W3208391091 cites W3091946902 @default.
- W3208391091 doi "https://doi.org/10.1109/ccci52664.2021.9583192" @default.
- W3208391091 hasPublicationYear "2021" @default.
- W3208391091 type Work @default.
- W3208391091 sameAs 3208391091 @default.
- W3208391091 citedByCount "1" @default.
- W3208391091 countsByYear W32083910912023 @default.
- W3208391091 crossrefType "proceedings-article" @default.
- W3208391091 hasAuthorship W3208391091A5015385344 @default.
- W3208391091 hasAuthorship W3208391091A5027099057 @default.
- W3208391091 hasAuthorship W3208391091A5037688054 @default.
- W3208391091 hasAuthorship W3208391091A5054720572 @default.
- W3208391091 hasAuthorship W3208391091A5059353810 @default.
- W3208391091 hasAuthorship W3208391091A5062077743 @default.
- W3208391091 hasConcept C115961682 @default.
- W3208391091 hasConcept C119857082 @default.
- W3208391091 hasConcept C127413603 @default.
- W3208391091 hasConcept C134306372 @default.
- W3208391091 hasConcept C152494472 @default.
- W3208391091 hasConcept C153180895 @default.
- W3208391091 hasConcept C154945302 @default.
- W3208391091 hasConcept C159390177 @default.
- W3208391091 hasConcept C159750122 @default.
- W3208391091 hasConcept C201995342 @default.
- W3208391091 hasConcept C2780451532 @default.
- W3208391091 hasConcept C33923547 @default.
- W3208391091 hasConcept C36503486 @default.
- W3208391091 hasConcept C39432304 @default.
- W3208391091 hasConcept C41008148 @default.
- W3208391091 hasConcept C45347329 @default.
- W3208391091 hasConcept C50644808 @default.
- W3208391091 hasConcept C75294576 @default.
- W3208391091 hasConcept C81363708 @default.
- W3208391091 hasConcept C88463610 @default.
- W3208391091 hasConceptScore W3208391091C115961682 @default.
- W3208391091 hasConceptScore W3208391091C119857082 @default.
- W3208391091 hasConceptScore W3208391091C127413603 @default.
- W3208391091 hasConceptScore W3208391091C134306372 @default.
- W3208391091 hasConceptScore W3208391091C152494472 @default.
- W3208391091 hasConceptScore W3208391091C153180895 @default.
- W3208391091 hasConceptScore W3208391091C154945302 @default.
- W3208391091 hasConceptScore W3208391091C159390177 @default.
- W3208391091 hasConceptScore W3208391091C159750122 @default.
- W3208391091 hasConceptScore W3208391091C201995342 @default.
- W3208391091 hasConceptScore W3208391091C2780451532 @default.
- W3208391091 hasConceptScore W3208391091C33923547 @default.
- W3208391091 hasConceptScore W3208391091C36503486 @default.
- W3208391091 hasConceptScore W3208391091C39432304 @default.
- W3208391091 hasConceptScore W3208391091C41008148 @default.
- W3208391091 hasConceptScore W3208391091C45347329 @default.
- W3208391091 hasConceptScore W3208391091C50644808 @default.
- W3208391091 hasConceptScore W3208391091C75294576 @default.
- W3208391091 hasConceptScore W3208391091C81363708 @default.
- W3208391091 hasConceptScore W3208391091C88463610 @default.
- W3208391091 hasLocation W32083910911 @default.
- W3208391091 hasOpenAccess W3208391091 @default.
- W3208391091 hasPrimaryLocation W32083910911 @default.
- W3208391091 hasRelatedWork W1982635469 @default.
- W3208391091 hasRelatedWork W2732542196 @default.
- W3208391091 hasRelatedWork W2760085659 @default.
- W3208391091 hasRelatedWork W2912288872 @default.
- W3208391091 hasRelatedWork W2940661641 @default.
- W3208391091 hasRelatedWork W2940977206 @default.
- W3208391091 hasRelatedWork W2964383635 @default.
- W3208391091 hasRelatedWork W3086857729 @default.
- W3208391091 hasRelatedWork W3153891452 @default.
- W3208391091 hasRelatedWork W4207027803 @default.
- W3208391091 isParatext "false" @default.
- W3208391091 isRetracted "false" @default.
- W3208391091 magId "3208391091" @default.
- W3208391091 workType "article" @default.