Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208423132> ?p ?o ?g. }
- W3208423132 endingPage "110372" @default.
- W3208423132 startingPage "110372" @default.
- W3208423132 abstract "When benchmarks are blocked by obstacles such as buildings, woods, hills, etc., it is time- and energy-consuming to acquire the height differences between them through classical geometric levelling because of the detour. Therefore, this paper proposes the combination of unmanned aerial vehicles (UAVs) and robotic total stations in determining height differences across obstacles. Carrying a 360° prism as the target and hovering in the air, the UAV can be sighted by both calibrated and synchronized robotic total stations near two benchmarks to conduct synchronous observations with the help of the automatic target recognition (ATR) and tracking systems. And the height difference between them can be calculated based on the principle of trigonometric levelling. The uncertainty sources that affect the accuracy of the proposed method are analyzed and the main observation procedures for practical use are provided. The results of experiments verify the feasibility, effectiveness and accuracy of the proposed method." @default.
- W3208423132 created "2021-11-08" @default.
- W3208423132 creator A5000556666 @default.
- W3208423132 creator A5050956175 @default.
- W3208423132 creator A5077909653 @default.
- W3208423132 creator A5082907523 @default.
- W3208423132 creator A5089106519 @default.
- W3208423132 date "2022-01-01" @default.
- W3208423132 modified "2023-09-27" @default.
- W3208423132 title "Using UAVs and robotic total stations in determining height differences when crossing obstacles" @default.
- W3208423132 cites W1985003819 @default.
- W3208423132 cites W2002580342 @default.
- W3208423132 cites W2007702179 @default.
- W3208423132 cites W2014582986 @default.
- W3208423132 cites W2014809656 @default.
- W3208423132 cites W2035600354 @default.
- W3208423132 cites W2047621254 @default.
- W3208423132 cites W2058498080 @default.
- W3208423132 cites W2072816973 @default.
- W3208423132 cites W2101517400 @default.
- W3208423132 cites W2343541469 @default.
- W3208423132 cites W2345060088 @default.
- W3208423132 cites W2418563961 @default.
- W3208423132 cites W2589424213 @default.
- W3208423132 cites W2668416142 @default.
- W3208423132 cites W2774494272 @default.
- W3208423132 cites W2784126651 @default.
- W3208423132 cites W2898966129 @default.
- W3208423132 cites W2900159052 @default.
- W3208423132 cites W2906908688 @default.
- W3208423132 cites W2951364142 @default.
- W3208423132 cites W2973710050 @default.
- W3208423132 cites W2989256313 @default.
- W3208423132 cites W3010182797 @default.
- W3208423132 cites W3043965698 @default.
- W3208423132 cites W3151761973 @default.
- W3208423132 cites W3171667636 @default.
- W3208423132 cites W4255932059 @default.
- W3208423132 doi "https://doi.org/10.1016/j.measurement.2021.110372" @default.
- W3208423132 hasPublicationYear "2022" @default.
- W3208423132 type Work @default.
- W3208423132 sameAs 3208423132 @default.
- W3208423132 citedByCount "3" @default.
- W3208423132 countsByYear W32084231322022 @default.
- W3208423132 countsByYear W32084231322023 @default.
- W3208423132 crossrefType "journal-article" @default.
- W3208423132 hasAuthorship W3208423132A5000556666 @default.
- W3208423132 hasAuthorship W3208423132A5050956175 @default.
- W3208423132 hasAuthorship W3208423132A5077909653 @default.
- W3208423132 hasAuthorship W3208423132A5082907523 @default.
- W3208423132 hasAuthorship W3208423132A5089106519 @default.
- W3208423132 hasConcept C100260852 @default.
- W3208423132 hasConcept C105795698 @default.
- W3208423132 hasConcept C120665830 @default.
- W3208423132 hasConcept C121332964 @default.
- W3208423132 hasConcept C13280743 @default.
- W3208423132 hasConcept C154945302 @default.
- W3208423132 hasConcept C15744967 @default.
- W3208423132 hasConcept C168498295 @default.
- W3208423132 hasConcept C186370098 @default.
- W3208423132 hasConcept C19417346 @default.
- W3208423132 hasConcept C205649164 @default.
- W3208423132 hasConcept C2524010 @default.
- W3208423132 hasConcept C2775936607 @default.
- W3208423132 hasConcept C29001434 @default.
- W3208423132 hasConcept C31972630 @default.
- W3208423132 hasConcept C33923547 @default.
- W3208423132 hasConcept C41008148 @default.
- W3208423132 hasConcept C44154836 @default.
- W3208423132 hasConcept C67666897 @default.
- W3208423132 hasConcept C79403827 @default.
- W3208423132 hasConceptScore W3208423132C100260852 @default.
- W3208423132 hasConceptScore W3208423132C105795698 @default.
- W3208423132 hasConceptScore W3208423132C120665830 @default.
- W3208423132 hasConceptScore W3208423132C121332964 @default.
- W3208423132 hasConceptScore W3208423132C13280743 @default.
- W3208423132 hasConceptScore W3208423132C154945302 @default.
- W3208423132 hasConceptScore W3208423132C15744967 @default.
- W3208423132 hasConceptScore W3208423132C168498295 @default.
- W3208423132 hasConceptScore W3208423132C186370098 @default.
- W3208423132 hasConceptScore W3208423132C19417346 @default.
- W3208423132 hasConceptScore W3208423132C205649164 @default.
- W3208423132 hasConceptScore W3208423132C2524010 @default.
- W3208423132 hasConceptScore W3208423132C2775936607 @default.
- W3208423132 hasConceptScore W3208423132C29001434 @default.
- W3208423132 hasConceptScore W3208423132C31972630 @default.
- W3208423132 hasConceptScore W3208423132C33923547 @default.
- W3208423132 hasConceptScore W3208423132C41008148 @default.
- W3208423132 hasConceptScore W3208423132C44154836 @default.
- W3208423132 hasConceptScore W3208423132C67666897 @default.
- W3208423132 hasConceptScore W3208423132C79403827 @default.
- W3208423132 hasFunder F4320313620 @default.
- W3208423132 hasFunder F4320321001 @default.
- W3208423132 hasLocation W32084231321 @default.
- W3208423132 hasOpenAccess W3208423132 @default.
- W3208423132 hasPrimaryLocation W32084231321 @default.
- W3208423132 hasRelatedWork W1497101000 @default.
- W3208423132 hasRelatedWork W1543936162 @default.