Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208434261> ?p ?o ?g. }
- W3208434261 endingPage "18" @default.
- W3208434261 startingPage "1" @default.
- W3208434261 abstract "Artificial Intelligence (AI) is increasingly embedded in business processes, including the Human Resource (HR) recruitment process. While AI can expedite the recruitment process, evidence from the industry, however, shows that AI-recruitment systems (AIRS) may fail to achieve unbiased decisions about applicants. There are risks of encoding biases in the datasets and algorithms of AI which lead AIRS to replicate and amplify human biases. To develop less biased AIRS, collaboration between HR managers and AI developers for training algorithms and exploring algorithmic biases is vital. Using an exploratory research design, 35 HR managers and AI developers globally were interviewed to understand the role of knowledge sharing during their collaboration in mitigating biases in AIRS. The findings show that knowledge sharing can help to mitigate biases in AIRS by informing data labeling, understanding job functions, and improving the machine learning model. Theoretical contributions and practical implications are suggested." @default.
- W3208434261 created "2021-11-08" @default.
- W3208434261 creator A5030777540 @default.
- W3208434261 creator A5066135952 @default.
- W3208434261 creator A5085643171 @default.
- W3208434261 date "2021-10-28" @default.
- W3208434261 modified "2023-10-16" @default.
- W3208434261 title "Mitigating Cognitive Biases in Developing AI-Assisted Recruitment Systems" @default.
- W3208434261 cites W1510672157 @default.
- W3208434261 cites W1765571909 @default.
- W3208434261 cites W1901616594 @default.
- W3208434261 cites W1968659298 @default.
- W3208434261 cites W2013068319 @default.
- W3208434261 cites W2017225767 @default.
- W3208434261 cites W2021368284 @default.
- W3208434261 cites W2044679885 @default.
- W3208434261 cites W2046236149 @default.
- W3208434261 cites W2056188449 @default.
- W3208434261 cites W2066173647 @default.
- W3208434261 cites W2071469251 @default.
- W3208434261 cites W2079277619 @default.
- W3208434261 cites W2085644215 @default.
- W3208434261 cites W2100501090 @default.
- W3208434261 cites W2106678396 @default.
- W3208434261 cites W2120422058 @default.
- W3208434261 cites W2128441693 @default.
- W3208434261 cites W2137874455 @default.
- W3208434261 cites W2147974475 @default.
- W3208434261 cites W2166558062 @default.
- W3208434261 cites W2168814736 @default.
- W3208434261 cites W2170508806 @default.
- W3208434261 cites W2312558265 @default.
- W3208434261 cites W2585853554 @default.
- W3208434261 cites W2768516824 @default.
- W3208434261 cites W2800595757 @default.
- W3208434261 cites W2898127855 @default.
- W3208434261 cites W2899856450 @default.
- W3208434261 cites W2905604475 @default.
- W3208434261 cites W2936121504 @default.
- W3208434261 cites W2960630842 @default.
- W3208434261 cites W2963849010 @default.
- W3208434261 cites W2965419229 @default.
- W3208434261 cites W2980202986 @default.
- W3208434261 cites W2980616108 @default.
- W3208434261 cites W2997401179 @default.
- W3208434261 cites W3004493409 @default.
- W3208434261 cites W3029504795 @default.
- W3208434261 cites W3037847188 @default.
- W3208434261 cites W3042956176 @default.
- W3208434261 cites W3092492170 @default.
- W3208434261 cites W3126055230 @default.
- W3208434261 cites W3157506384 @default.
- W3208434261 cites W3208899803 @default.
- W3208434261 cites W4211058805 @default.
- W3208434261 cites W605135440 @default.
- W3208434261 doi "https://doi.org/10.4018/ijkm.290022" @default.
- W3208434261 hasPublicationYear "2021" @default.
- W3208434261 type Work @default.
- W3208434261 sameAs 3208434261 @default.
- W3208434261 citedByCount "6" @default.
- W3208434261 countsByYear W32084342612022 @default.
- W3208434261 countsByYear W32084342612023 @default.
- W3208434261 crossrefType "journal-article" @default.
- W3208434261 hasAuthorship W3208434261A5030777540 @default.
- W3208434261 hasAuthorship W3208434261A5066135952 @default.
- W3208434261 hasAuthorship W3208434261A5085643171 @default.
- W3208434261 hasBestOaLocation W32084342611 @default.
- W3208434261 hasConcept C105795698 @default.
- W3208434261 hasConcept C111919701 @default.
- W3208434261 hasConcept C154945302 @default.
- W3208434261 hasConcept C15744967 @default.
- W3208434261 hasConcept C169760540 @default.
- W3208434261 hasConcept C169900460 @default.
- W3208434261 hasConcept C2522767166 @default.
- W3208434261 hasConcept C2781162219 @default.
- W3208434261 hasConcept C33923547 @default.
- W3208434261 hasConcept C41008148 @default.
- W3208434261 hasConcept C56739046 @default.
- W3208434261 hasConcept C98045186 @default.
- W3208434261 hasConceptScore W3208434261C105795698 @default.
- W3208434261 hasConceptScore W3208434261C111919701 @default.
- W3208434261 hasConceptScore W3208434261C154945302 @default.
- W3208434261 hasConceptScore W3208434261C15744967 @default.
- W3208434261 hasConceptScore W3208434261C169760540 @default.
- W3208434261 hasConceptScore W3208434261C169900460 @default.
- W3208434261 hasConceptScore W3208434261C2522767166 @default.
- W3208434261 hasConceptScore W3208434261C2781162219 @default.
- W3208434261 hasConceptScore W3208434261C33923547 @default.
- W3208434261 hasConceptScore W3208434261C41008148 @default.
- W3208434261 hasConceptScore W3208434261C56739046 @default.
- W3208434261 hasConceptScore W3208434261C98045186 @default.
- W3208434261 hasIssue "1" @default.
- W3208434261 hasLocation W32084342611 @default.
- W3208434261 hasOpenAccess W3208434261 @default.
- W3208434261 hasPrimaryLocation W32084342611 @default.
- W3208434261 hasRelatedWork W1996408511 @default.
- W3208434261 hasRelatedWork W2370652759 @default.
- W3208434261 hasRelatedWork W2376425778 @default.