Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208441000> ?p ?o ?g. }
- W3208441000 endingPage "065408" @default.
- W3208441000 startingPage "065408" @default.
- W3208441000 abstract "The effective thermal conductivity of soils is a crucial parameter for many applications such as geothermal engineering, environmental science, and agriculture and engineering. However, it is pretty challenging to accurately determine it due to soils' complex structure and components. In the present study, the influences of different parameters, including silt content (msi), sand content (msa), clay content (mcl), quartz content (mqu), porosity, and water content on the effective thermal conductivity of soils, were firstly analyzed by the Pearson correlation coefficient. Then different artificial neural network (ANN) models were developed based on the 465 groups of thermal conductivity of unfrozen soils collected from the literature to predict the effective thermal conductivity of soils. Results reveal that the parameters ofmsi,msa,mcl, andmquhave a relatively slight influence on the effective thermal conductivity of soils compared to the water content and porosity. Although the ANN model with six parameters has the highest accuracy, the ANN model with two input parameters (porosity and water content) could predict the effective thermal conductivity well with acceptable accuracy andR2=0.940. Finally, a correlation of the effective thermal conductivity for different soils was proposed based on the large number of results predicted by the two input parameters ANN-based model. This correlation has proved to have a higher accuracy without assumptions and uncertain parameters when compared to several commonly used existing models." @default.
- W3208441000 created "2021-11-08" @default.
- W3208441000 creator A5021984184 @default.
- W3208441000 creator A5036927789 @default.
- W3208441000 creator A5044828742 @default.
- W3208441000 creator A5047512906 @default.
- W3208441000 creator A5066347347 @default.
- W3208441000 date "2021-11-19" @default.
- W3208441000 modified "2023-10-16" @default.
- W3208441000 title "Predicting the effective thermal conductivity of unfrozen soils with various water contents based on artificial neural network" @default.
- W3208441000 cites W1556995040 @default.
- W3208441000 cites W1969901744 @default.
- W3208441000 cites W1981525306 @default.
- W3208441000 cites W1994296880 @default.
- W3208441000 cites W2016094676 @default.
- W3208441000 cites W2032459157 @default.
- W3208441000 cites W2052378543 @default.
- W3208441000 cites W2072462334 @default.
- W3208441000 cites W2073441250 @default.
- W3208441000 cites W2076271908 @default.
- W3208441000 cites W2091515622 @default.
- W3208441000 cites W2142204857 @default.
- W3208441000 cites W2145785920 @default.
- W3208441000 cites W2256732810 @default.
- W3208441000 cites W2494454509 @default.
- W3208441000 cites W2600126118 @default.
- W3208441000 cites W2623442395 @default.
- W3208441000 cites W2741168130 @default.
- W3208441000 cites W2752698889 @default.
- W3208441000 cites W2792051957 @default.
- W3208441000 cites W2899673800 @default.
- W3208441000 cites W2901914203 @default.
- W3208441000 cites W2953172668 @default.
- W3208441000 cites W2954326172 @default.
- W3208441000 cites W2956333146 @default.
- W3208441000 cites W2967167513 @default.
- W3208441000 cites W2990184918 @default.
- W3208441000 cites W3003050222 @default.
- W3208441000 cites W3024245099 @default.
- W3208441000 cites W3027928839 @default.
- W3208441000 cites W3041664029 @default.
- W3208441000 cites W3081536799 @default.
- W3208441000 cites W3084020106 @default.
- W3208441000 cites W3084876813 @default.
- W3208441000 cites W3088015351 @default.
- W3208441000 cites W3091022083 @default.
- W3208441000 cites W3093394816 @default.
- W3208441000 cites W3098647298 @default.
- W3208441000 cites W3110032510 @default.
- W3208441000 cites W3114746512 @default.
- W3208441000 cites W3116886757 @default.
- W3208441000 cites W3117891459 @default.
- W3208441000 cites W3119211856 @default.
- W3208441000 cites W3127211694 @default.
- W3208441000 cites W3133181227 @default.
- W3208441000 cites W3148181069 @default.
- W3208441000 cites W3159387443 @default.
- W3208441000 cites W3171488160 @default.
- W3208441000 cites W990013009 @default.
- W3208441000 doi "https://doi.org/10.1088/1361-6528/ac3688" @default.
- W3208441000 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34736243" @default.
- W3208441000 hasPublicationYear "2021" @default.
- W3208441000 type Work @default.
- W3208441000 sameAs 3208441000 @default.
- W3208441000 citedByCount "5" @default.
- W3208441000 countsByYear W32084410002022 @default.
- W3208441000 countsByYear W32084410002023 @default.
- W3208441000 crossrefType "journal-article" @default.
- W3208441000 hasAuthorship W3208441000A5021984184 @default.
- W3208441000 hasAuthorship W3208441000A5036927789 @default.
- W3208441000 hasAuthorship W3208441000A5044828742 @default.
- W3208441000 hasAuthorship W3208441000A5047512906 @default.
- W3208441000 hasAuthorship W3208441000A5066347347 @default.
- W3208441000 hasConcept C105795698 @default.
- W3208441000 hasConcept C111766609 @default.
- W3208441000 hasConcept C119857082 @default.
- W3208441000 hasConcept C121332964 @default.
- W3208441000 hasConcept C127313418 @default.
- W3208441000 hasConcept C151730666 @default.
- W3208441000 hasConcept C159390177 @default.
- W3208441000 hasConcept C159750122 @default.
- W3208441000 hasConcept C159985019 @default.
- W3208441000 hasConcept C161222754 @default.
- W3208441000 hasConcept C164285268 @default.
- W3208441000 hasConcept C187320778 @default.
- W3208441000 hasConcept C192562407 @default.
- W3208441000 hasConcept C199289684 @default.
- W3208441000 hasConcept C204530211 @default.
- W3208441000 hasConcept C24939127 @default.
- W3208441000 hasConcept C2780092901 @default.
- W3208441000 hasConcept C33923547 @default.
- W3208441000 hasConcept C39432304 @default.
- W3208441000 hasConcept C41008148 @default.
- W3208441000 hasConcept C50644808 @default.
- W3208441000 hasConcept C63184880 @default.
- W3208441000 hasConcept C6648577 @default.
- W3208441000 hasConcept C8058405 @default.
- W3208441000 hasConcept C97346530 @default.