Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208441835> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3208441835 endingPage "2662" @default.
- W3208441835 startingPage "2649" @default.
- W3208441835 abstract "Various eye diseases affect the quality of human life severely and ultimately may result in complete vision loss. Ocular diseases manifest themselves through mostly visual indicators in the early or mature stages of the disease by showing abnormalities in optics disc, fovea, or other descriptive anatomical structures of the eye. Cataract is among the most harmful diseases that affects millions of people and the leading cause of public vision impairment. It shows major visual symptoms that can be employed for early detection before the hypermature stage. Automatic diagnosis systems intend to assist ophthalmological experts by mitigating the burden of manual clinical decisions and on health care utilization. In this study, a diagnosis system based on color fundus images are addressed for cataract disease. Deep learning-based models were performed for the automatic identification of cataract diseases. Two pretrained robust architectures, namely VGGNet and DenseNet, were employed to detect abnormalities in descriptive parts of the human eye. The proposed system is implemented on a wide and unique dataset that includes diverse color retinal fundus images that are acquired comparatively in low-cost and common modality, which is considered a major contribution of the study. The dataset show symptoms of cataracts in different phases and represents the characteristics of the cataract. By the proposed system, dysfunction associated with cataracts could be identified in the early stage. The achievement of the proposed system is compared to various traditional and up-to-date classification systems. The proposed system achieves 97.94% diagnosis rate for cataract disease grading." @default.
- W3208441835 created "2021-11-08" @default.
- W3208441835 creator A5002713395 @default.
- W3208441835 creator A5049831224 @default.
- W3208441835 creator A5069662077 @default.
- W3208441835 creator A5082270908 @default.
- W3208441835 date "2021-10-04" @default.
- W3208441835 modified "2023-10-16" @default.
- W3208441835 title "Employing deep learning architectures for image-based automatic cataract diagnosis" @default.
- W3208441835 doi "https://doi.org/10.3906/elk-2103-77" @default.
- W3208441835 hasPublicationYear "2021" @default.
- W3208441835 type Work @default.
- W3208441835 sameAs 3208441835 @default.
- W3208441835 citedByCount "5" @default.
- W3208441835 countsByYear W32084418352023 @default.
- W3208441835 crossrefType "journal-article" @default.
- W3208441835 hasAuthorship W3208441835A5002713395 @default.
- W3208441835 hasAuthorship W3208441835A5049831224 @default.
- W3208441835 hasAuthorship W3208441835A5069662077 @default.
- W3208441835 hasAuthorship W3208441835A5082270908 @default.
- W3208441835 hasBestOaLocation W32084418351 @default.
- W3208441835 hasConcept C108583219 @default.
- W3208441835 hasConcept C118487528 @default.
- W3208441835 hasConcept C119767625 @default.
- W3208441835 hasConcept C127413603 @default.
- W3208441835 hasConcept C142724271 @default.
- W3208441835 hasConcept C147176958 @default.
- W3208441835 hasConcept C154945302 @default.
- W3208441835 hasConcept C2776391266 @default.
- W3208441835 hasConcept C2777286243 @default.
- W3208441835 hasConcept C2779134260 @default.
- W3208441835 hasConcept C2780225610 @default.
- W3208441835 hasConcept C2780226545 @default.
- W3208441835 hasConcept C41008148 @default.
- W3208441835 hasConcept C71924100 @default.
- W3208441835 hasConceptScore W3208441835C108583219 @default.
- W3208441835 hasConceptScore W3208441835C118487528 @default.
- W3208441835 hasConceptScore W3208441835C119767625 @default.
- W3208441835 hasConceptScore W3208441835C127413603 @default.
- W3208441835 hasConceptScore W3208441835C142724271 @default.
- W3208441835 hasConceptScore W3208441835C147176958 @default.
- W3208441835 hasConceptScore W3208441835C154945302 @default.
- W3208441835 hasConceptScore W3208441835C2776391266 @default.
- W3208441835 hasConceptScore W3208441835C2777286243 @default.
- W3208441835 hasConceptScore W3208441835C2779134260 @default.
- W3208441835 hasConceptScore W3208441835C2780225610 @default.
- W3208441835 hasConceptScore W3208441835C2780226545 @default.
- W3208441835 hasConceptScore W3208441835C41008148 @default.
- W3208441835 hasConceptScore W3208441835C71924100 @default.
- W3208441835 hasIssue "SI-1" @default.
- W3208441835 hasLocation W32084418351 @default.
- W3208441835 hasOpenAccess W3208441835 @default.
- W3208441835 hasPrimaryLocation W32084418351 @default.
- W3208441835 hasRelatedWork W2294926082 @default.
- W3208441835 hasRelatedWork W2297761292 @default.
- W3208441835 hasRelatedWork W2605364946 @default.
- W3208441835 hasRelatedWork W2738758199 @default.
- W3208441835 hasRelatedWork W2740997538 @default.
- W3208441835 hasRelatedWork W2898036114 @default.
- W3208441835 hasRelatedWork W2948685905 @default.
- W3208441835 hasRelatedWork W3089025284 @default.
- W3208441835 hasRelatedWork W4293437635 @default.
- W3208441835 hasRelatedWork W4310880831 @default.
- W3208441835 hasVolume "29" @default.
- W3208441835 isParatext "false" @default.
- W3208441835 isRetracted "false" @default.
- W3208441835 magId "3208441835" @default.
- W3208441835 workType "article" @default.