Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208474673> ?p ?o ?g. }
- W3208474673 endingPage "103992" @default.
- W3208474673 startingPage "103992" @default.
- W3208474673 abstract "In recent years, monitoring the health condition of existing bridges has become a common requirement. By providing an information management system, Bridge Information Model (BrIM) can highly improve the efficiency of health inspection and the reliability of condition evaluation. However, the current modeling processes still largely rely on manual work, where the cost outweighs the benefits. The main barrier lies in the challenging step of semantic segmentation of point clouds. Efforts have been made to identify and segment the structural components of bridges in existing research. But these methods are either dependent on manual data preprocessing or need big training dataset, which, however, has rendered them unpractical in real-world applications. This paper presents a combined local descriptor and machine learning based method to automatically detect structural components of bridges from point clouds. Based on the geometrical features of bridges, we design a multi-scale local descriptor, which is then used to train a deep classification neural network. In the end, a result refinement algorithm is adopted to optimize the segmentation results. Experiments on real-world reinforced concrete (RC) slab and beam-slab bridges show an average precision of 97.26%, recall of 98.00%, and intersection over union (IoU) of 95.38%, which significantly outperforms PointNet. This method has provided a potential solution to semantic segmentation of infrastructures by small sample learning and will contribute to the fulfillment of the automatic BrIM generation of typical highway bridges from the point cloud in the future. • We propose a fully automated semantic segmentation method for bridge point cloud. • We design a novel local descriptor to describe geometric features of bridges. • We use a neural network for classification and a clustering algorithm for refinement. • We validate our method on two real-world datasets with 11 bridges in total. • Our method outperforms PointNet by improving mean IoU from 44.29% to 94.72%." @default.
- W3208474673 created "2021-11-08" @default.
- W3208474673 creator A5073392772 @default.
- W3208474673 creator A5081349850 @default.
- W3208474673 creator A5091209653 @default.
- W3208474673 date "2022-01-01" @default.
- W3208474673 modified "2023-10-16" @default.
- W3208474673 title "Automated semantic segmentation of bridge point cloud based on local descriptor and machine learning" @default.
- W3208474673 cites W1498436455 @default.
- W3208474673 cites W1999993274 @default.
- W3208474673 cites W2014997627 @default.
- W3208474673 cites W2026101879 @default.
- W3208474673 cites W2033552406 @default.
- W3208474673 cites W2034386730 @default.
- W3208474673 cites W2041642242 @default.
- W3208474673 cites W2057531282 @default.
- W3208474673 cites W2085261163 @default.
- W3208474673 cites W2087166203 @default.
- W3208474673 cites W2099088762 @default.
- W3208474673 cites W2099606917 @default.
- W3208474673 cites W2104509690 @default.
- W3208474673 cites W2108569747 @default.
- W3208474673 cites W2119512999 @default.
- W3208474673 cites W2126134675 @default.
- W3208474673 cites W2137983211 @default.
- W3208474673 cites W2140422210 @default.
- W3208474673 cites W2146720839 @default.
- W3208474673 cites W2163774200 @default.
- W3208474673 cites W22745672 @default.
- W3208474673 cites W2297870558 @default.
- W3208474673 cites W2417137833 @default.
- W3208474673 cites W2562621073 @default.
- W3208474673 cites W2596546056 @default.
- W3208474673 cites W2806828180 @default.
- W3208474673 cites W28412257 @default.
- W3208474673 cites W2884228899 @default.
- W3208474673 cites W2885064546 @default.
- W3208474673 cites W2913109850 @default.
- W3208474673 cites W2944091426 @default.
- W3208474673 cites W2979750740 @default.
- W3208474673 cites W3008539688 @default.
- W3208474673 cites W3033736446 @default.
- W3208474673 cites W3036860105 @default.
- W3208474673 cites W3040828350 @default.
- W3208474673 cites W3099725298 @default.
- W3208474673 cites W3126649058 @default.
- W3208474673 cites W3129799165 @default.
- W3208474673 doi "https://doi.org/10.1016/j.autcon.2021.103992" @default.
- W3208474673 hasPublicationYear "2022" @default.
- W3208474673 type Work @default.
- W3208474673 sameAs 3208474673 @default.
- W3208474673 citedByCount "28" @default.
- W3208474673 countsByYear W32084746732022 @default.
- W3208474673 countsByYear W32084746732023 @default.
- W3208474673 crossrefType "journal-article" @default.
- W3208474673 hasAuthorship W3208474673A5073392772 @default.
- W3208474673 hasAuthorship W3208474673A5081349850 @default.
- W3208474673 hasAuthorship W3208474673A5091209653 @default.
- W3208474673 hasBestOaLocation W32084746731 @default.
- W3208474673 hasConcept C100776233 @default.
- W3208474673 hasConcept C111919701 @default.
- W3208474673 hasConcept C119857082 @default.
- W3208474673 hasConcept C126322002 @default.
- W3208474673 hasConcept C131979681 @default.
- W3208474673 hasConcept C154945302 @default.
- W3208474673 hasConcept C2524010 @default.
- W3208474673 hasConcept C28719098 @default.
- W3208474673 hasConcept C31972630 @default.
- W3208474673 hasConcept C33923547 @default.
- W3208474673 hasConcept C41008148 @default.
- W3208474673 hasConcept C71924100 @default.
- W3208474673 hasConcept C79974875 @default.
- W3208474673 hasConcept C89600930 @default.
- W3208474673 hasConceptScore W3208474673C100776233 @default.
- W3208474673 hasConceptScore W3208474673C111919701 @default.
- W3208474673 hasConceptScore W3208474673C119857082 @default.
- W3208474673 hasConceptScore W3208474673C126322002 @default.
- W3208474673 hasConceptScore W3208474673C131979681 @default.
- W3208474673 hasConceptScore W3208474673C154945302 @default.
- W3208474673 hasConceptScore W3208474673C2524010 @default.
- W3208474673 hasConceptScore W3208474673C28719098 @default.
- W3208474673 hasConceptScore W3208474673C31972630 @default.
- W3208474673 hasConceptScore W3208474673C33923547 @default.
- W3208474673 hasConceptScore W3208474673C41008148 @default.
- W3208474673 hasConceptScore W3208474673C71924100 @default.
- W3208474673 hasConceptScore W3208474673C79974875 @default.
- W3208474673 hasConceptScore W3208474673C89600930 @default.
- W3208474673 hasFunder F4320321885 @default.
- W3208474673 hasLocation W32084746731 @default.
- W3208474673 hasLocation W32084746732 @default.
- W3208474673 hasOpenAccess W3208474673 @default.
- W3208474673 hasPrimaryLocation W32084746731 @default.
- W3208474673 hasRelatedWork W1997222214 @default.
- W3208474673 hasRelatedWork W2070395303 @default.
- W3208474673 hasRelatedWork W2100170515 @default.
- W3208474673 hasRelatedWork W2134969820 @default.
- W3208474673 hasRelatedWork W2251605416 @default.
- W3208474673 hasRelatedWork W3020139090 @default.