Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208482056> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3208482056 abstract "Numerical simulation is essential, to assist in the development of wave energy technology. In particular,tasks such as power assessment, optimisation and structural design require a large numberof numerical simulations to calculate the wave energy converter (WEC) outputs of interest, over avariety of wave conditions or physical parameters. Such challenges involve a sound understandingof the statistical properties of ocean waves, which constitute the forcing inputs to the wave energydevice, and computationally efficient numerical techniques for the speedy calculation of WECoutputs. This thesis studies the statistical characterisation, and numerical generation, of oceanwaves, and proposes a novel technique for the numerical simulation of non-linear WEC models.The theoretical foundations, the range of validity, and the importance of the statistical representationof ocean waves are first examined. Under relatively mild assumptions, ocean waves canbe best described as a stationary Gaussian process, which is entirely characterised by its spectraldensity function (SDF). Various wave superposition techniques are discussed and rigorouslycompared, for the numerical generation of Gaussian wave elevation time series from a given SDF.In particular, the harmonic random amplitude (HRA) approach can simulate the target statisticalproperties with perfect realism. In contrast, the harmonic deterministic amplitude (HDA)approach is statistically inconsistent (because the generated time-series are non-Gaussian, andunder-represent the short-term statistical variability of real ocean waves), but can be advantageousin the context of WEC simulations since, if it can be verified that HDA results are unbiased, theHDA method requires a smaller number of random realisations than the HRA method, to obtainaccurate WEC power estimates.When either HDA or HRA are used for the generation of wave inputs, the forcing terms ofWEC mathematical models are periodic. Relying on a Fourier representation of the system inputsand variables, the harmonic balance (HB) method, which is a special case of spectral methods, is asuitable mathematical technique to numerically calculate the steady-state response of a non-linearsystem, under a periodic input. The applicability of the method to WEC simulation is demonstratedfor those WEC models which are described by means of a non-linear integro-differentialequation. In the proposed simulation framework, the WEC output, in a given sea state, is assessedby means of many, relatively short, simulations, each of which is efficiently solved using the HBmethod.A range of four case studies is considered, comprising a flap-type WEC, a spherical heavingpoint-absorber, an array of four cylindrical heaving point-absorbers, and a pitching device. Foreach case, it is shown how the HB settings (simulation duration and cut-off frequency) can becalibrated. The accuracy of the HB method is assessed through a comparison with a second-orderRunge-Kutta (RK2) time-domain integration scheme, with various time steps. RK2 results convergeto the HB solution, as the RK2 time step tends to zero. Furthermore, in a Matlab implementation,the HB method is between one and three orders of magnitude faster than the RK2 method,depending on the RK2 time step, and on the method chosen for the calculation of the radiationmemory terms in RK2 simulations. The HB formalism also provides an interesting framework,for studying the sensitivity of the WEC dynamics to system parameter variations, which can beutilised within a gradient-based parametric optimisation algorithm. An example of WEC gradientbasedparametric optimisation, carried out within the HB framework, is provided." @default.
- W3208482056 created "2021-11-08" @default.
- W3208482056 creator A5012717786 @default.
- W3208482056 date "2018-01-01" @default.
- W3208482056 modified "2023-09-28" @default.
- W3208482056 title "A harmonic balance framework for thenumerical simulation of non-linear wave energyconverter models in random seas" @default.
- W3208482056 hasPublicationYear "2018" @default.
- W3208482056 type Work @default.
- W3208482056 sameAs 3208482056 @default.
- W3208482056 citedByCount "0" @default.
- W3208482056 crossrefType "dissertation" @default.
- W3208482056 hasAuthorship W3208482056A5012717786 @default.
- W3208482056 hasConcept C105795698 @default.
- W3208482056 hasConcept C120665830 @default.
- W3208482056 hasConcept C121332964 @default.
- W3208482056 hasConcept C121864883 @default.
- W3208482056 hasConcept C127313418 @default.
- W3208482056 hasConcept C134306372 @default.
- W3208482056 hasConcept C151730666 @default.
- W3208482056 hasConcept C158622935 @default.
- W3208482056 hasConcept C163716315 @default.
- W3208482056 hasConcept C165082838 @default.
- W3208482056 hasConcept C168110828 @default.
- W3208482056 hasConcept C180205008 @default.
- W3208482056 hasConcept C189201455 @default.
- W3208482056 hasConcept C27753989 @default.
- W3208482056 hasConcept C2779343474 @default.
- W3208482056 hasConcept C33923547 @default.
- W3208482056 hasConcept C41008148 @default.
- W3208482056 hasConcept C44154836 @default.
- W3208482056 hasConcept C500300565 @default.
- W3208482056 hasConcept C61326573 @default.
- W3208482056 hasConcept C62520636 @default.
- W3208482056 hasConcept C97355855 @default.
- W3208482056 hasConceptScore W3208482056C105795698 @default.
- W3208482056 hasConceptScore W3208482056C120665830 @default.
- W3208482056 hasConceptScore W3208482056C121332964 @default.
- W3208482056 hasConceptScore W3208482056C121864883 @default.
- W3208482056 hasConceptScore W3208482056C127313418 @default.
- W3208482056 hasConceptScore W3208482056C134306372 @default.
- W3208482056 hasConceptScore W3208482056C151730666 @default.
- W3208482056 hasConceptScore W3208482056C158622935 @default.
- W3208482056 hasConceptScore W3208482056C163716315 @default.
- W3208482056 hasConceptScore W3208482056C165082838 @default.
- W3208482056 hasConceptScore W3208482056C168110828 @default.
- W3208482056 hasConceptScore W3208482056C180205008 @default.
- W3208482056 hasConceptScore W3208482056C189201455 @default.
- W3208482056 hasConceptScore W3208482056C27753989 @default.
- W3208482056 hasConceptScore W3208482056C2779343474 @default.
- W3208482056 hasConceptScore W3208482056C33923547 @default.
- W3208482056 hasConceptScore W3208482056C41008148 @default.
- W3208482056 hasConceptScore W3208482056C44154836 @default.
- W3208482056 hasConceptScore W3208482056C500300565 @default.
- W3208482056 hasConceptScore W3208482056C61326573 @default.
- W3208482056 hasConceptScore W3208482056C62520636 @default.
- W3208482056 hasConceptScore W3208482056C97355855 @default.
- W3208482056 hasLocation W32084820561 @default.
- W3208482056 hasOpenAccess W3208482056 @default.
- W3208482056 hasPrimaryLocation W32084820561 @default.
- W3208482056 hasRelatedWork W148888779 @default.
- W3208482056 hasRelatedWork W1664221781 @default.
- W3208482056 hasRelatedWork W1972012015 @default.
- W3208482056 hasRelatedWork W2050946701 @default.
- W3208482056 hasRelatedWork W2058003326 @default.
- W3208482056 hasRelatedWork W2082488801 @default.
- W3208482056 hasRelatedWork W2113400787 @default.
- W3208482056 hasRelatedWork W2181771570 @default.
- W3208482056 hasRelatedWork W2192244810 @default.
- W3208482056 hasRelatedWork W2209935085 @default.
- W3208482056 hasRelatedWork W2357221979 @default.
- W3208482056 hasRelatedWork W2527091386 @default.
- W3208482056 hasRelatedWork W2790216732 @default.
- W3208482056 hasRelatedWork W2888501517 @default.
- W3208482056 hasRelatedWork W2958426889 @default.
- W3208482056 hasRelatedWork W2990158818 @default.
- W3208482056 hasRelatedWork W3016066465 @default.
- W3208482056 hasRelatedWork W3113250653 @default.
- W3208482056 hasRelatedWork W576766598 @default.
- W3208482056 hasRelatedWork W604629712 @default.
- W3208482056 isParatext "false" @default.
- W3208482056 isRetracted "false" @default.
- W3208482056 magId "3208482056" @default.
- W3208482056 workType "dissertation" @default.