Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208482597> ?p ?o ?g. }
- W3208482597 endingPage "10007" @default.
- W3208482597 startingPage "10007" @default.
- W3208482597 abstract "Machine learning is emerging nowadays as an important tool for decision support in many areas of research. In the field of education, both educational organizations and students are the target beneficiaries. It facilitates the educational sector in predicting the student’s outcome at the end of their course and for the students in deciding to choose a suitable course for them based on their performances in previous exams and other behavioral features. In this study, a systematic literature review is performed to extract the algorithms and the features that have been used in the prediction studies. Based on the search criteria, 2700 articles were initially considered. Using specified inclusion and exclusion criteria, quality scores were provided, and up to 56 articles were filtered for further analysis. The utmost care was taken in studying the features utilized, database used, algorithms implemented, and the future directions as recommended by researchers. The features were classified as demographic, academic, and behavioral features, and finally, only 34 articles with these features were finalized, whose details of study are provided. Based on the results obtained from the systematic review, we conclude that the machine learning techniques have the ability to predict the students’ performance based on specified features as categorized and can be used by students as well as academic institutions. A specific machine learning model identification for the purpose of student academic performance prediction would not be feasible, since each paper taken for review involves different datasets and does not include benchmark datasets. However, the application of the machine learning techniques in educational mining is still limited, and a greater number of studies should be carried out in order to obtain well-formed and generalizable results. We provide future guidelines to practitioners and researchers based on the results obtained in this work." @default.
- W3208482597 created "2021-11-08" @default.
- W3208482597 creator A5017223156 @default.
- W3208482597 creator A5041623194 @default.
- W3208482597 creator A5042675693 @default.
- W3208482597 creator A5050486936 @default.
- W3208482597 date "2021-10-26" @default.
- W3208482597 modified "2023-09-25" @default.
- W3208482597 title "Contributions of Machine Learning Models towards Student Academic Performance Prediction: A Systematic Review" @default.
- W3208482597 cites W1502991139 @default.
- W3208482597 cites W2033278032 @default.
- W3208482597 cites W2049868504 @default.
- W3208482597 cites W2065641133 @default.
- W3208482597 cites W2145445683 @default.
- W3208482597 cites W2186353839 @default.
- W3208482597 cites W2394163282 @default.
- W3208482597 cites W2588330427 @default.
- W3208482597 cites W2605296821 @default.
- W3208482597 cites W2778346537 @default.
- W3208482597 cites W2789034731 @default.
- W3208482597 cites W2790973177 @default.
- W3208482597 cites W2791787546 @default.
- W3208482597 cites W2801420569 @default.
- W3208482597 cites W2802381512 @default.
- W3208482597 cites W2811374032 @default.
- W3208482597 cites W2888509550 @default.
- W3208482597 cites W2892797454 @default.
- W3208482597 cites W2897487887 @default.
- W3208482597 cites W2902553462 @default.
- W3208482597 cites W2902833221 @default.
- W3208482597 cites W2902900773 @default.
- W3208482597 cites W2905931716 @default.
- W3208482597 cites W2911285567 @default.
- W3208482597 cites W2916446848 @default.
- W3208482597 cites W2917344953 @default.
- W3208482597 cites W2935878216 @default.
- W3208482597 cites W2943210284 @default.
- W3208482597 cites W2945646438 @default.
- W3208482597 cites W2949139916 @default.
- W3208482597 cites W2953542916 @default.
- W3208482597 cites W2953885385 @default.
- W3208482597 cites W2954399969 @default.
- W3208482597 cites W2954703829 @default.
- W3208482597 cites W2955391314 @default.
- W3208482597 cites W2962970583 @default.
- W3208482597 cites W2965229811 @default.
- W3208482597 cites W2966311710 @default.
- W3208482597 cites W2978890887 @default.
- W3208482597 cites W2980237653 @default.
- W3208482597 cites W2982623704 @default.
- W3208482597 cites W2983382509 @default.
- W3208482597 cites W2986705763 @default.
- W3208482597 cites W2990120466 @default.
- W3208482597 cites W2992649892 @default.
- W3208482597 cites W2994613842 @default.
- W3208482597 cites W2995912387 @default.
- W3208482597 cites W2998169223 @default.
- W3208482597 cites W2999492687 @default.
- W3208482597 cites W3000116604 @default.
- W3208482597 cites W3004478116 @default.
- W3208482597 cites W3008915674 @default.
- W3208482597 cites W3009852048 @default.
- W3208482597 cites W3012398293 @default.
- W3208482597 cites W3016892886 @default.
- W3208482597 cites W3018659574 @default.
- W3208482597 cites W3021058087 @default.
- W3208482597 cites W3021330828 @default.
- W3208482597 cites W3021804238 @default.
- W3208482597 cites W3022199973 @default.
- W3208482597 cites W3026875471 @default.
- W3208482597 cites W3029464237 @default.
- W3208482597 cites W3033504543 @default.
- W3208482597 cites W3035605851 @default.
- W3208482597 cites W3036645862 @default.
- W3208482597 cites W3041198872 @default.
- W3208482597 cites W3045407904 @default.
- W3208482597 cites W3045509030 @default.
- W3208482597 cites W3046432143 @default.
- W3208482597 cites W3047121875 @default.
- W3208482597 cites W3082169404 @default.
- W3208482597 cites W3082751271 @default.
- W3208482597 cites W3087431152 @default.
- W3208482597 cites W3093878986 @default.
- W3208482597 cites W3105841779 @default.
- W3208482597 doi "https://doi.org/10.3390/app112110007" @default.
- W3208482597 hasPublicationYear "2021" @default.
- W3208482597 type Work @default.
- W3208482597 sameAs 3208482597 @default.
- W3208482597 citedByCount "9" @default.
- W3208482597 countsByYear W32084825972022 @default.
- W3208482597 countsByYear W32084825972023 @default.
- W3208482597 crossrefType "journal-article" @default.
- W3208482597 hasAuthorship W3208482597A5017223156 @default.
- W3208482597 hasAuthorship W3208482597A5041623194 @default.
- W3208482597 hasAuthorship W3208482597A5042675693 @default.
- W3208482597 hasAuthorship W3208482597A5050486936 @default.
- W3208482597 hasBestOaLocation W32084825971 @default.
- W3208482597 hasConcept C109359841 @default.