Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208482682> ?p ?o ?g. }
- W3208482682 abstract "We devise a multimodal conversation system for dialogue utterances composed of text, image or both modalities. We leverage Auxiliary UnsuperviseD vIsual and TExtual Data (AUDITED). To improve the performance of text-based task, we utilize translations of target sentences from English to French to form the assisted supervision. For the image-based task, we employ the DeepFashion dataset in which we seek nearest neighbor images of positive and negative target images of the MMD data. These nearest neighbors form the nearest neighbor embedding providing an external context for target images. We form two methods to create neighbor embedding vectors, namely Neighbor Embedding by Hard Assignment (NEHA) and Neighbor Embedding by Soft Assignment (NESA) which generate context subspaces per target image. Subsequently, these subspaces are learnt by our pipeline as a context for the target data. We also propose a discriminator which switches between the image- and text-based tasks. We show improvements over baselines on the large-scale Multimodal Dialogue Dataset (MMD) and SIMMC." @default.
- W3208482682 created "2021-11-08" @default.
- W3208482682 creator A5002212263 @default.
- W3208482682 creator A5043287647 @default.
- W3208482682 date "2021-10-22" @default.
- W3208482682 modified "2023-09-27" @default.
- W3208482682 title "Simple Dialogue System with AUDITED" @default.
- W3208482682 cites W1514535095 @default.
- W3208482682 cites W1520997877 @default.
- W3208482682 cites W1654173042 @default.
- W3208482682 cites W1686810756 @default.
- W3208482682 cites W179875071 @default.
- W3208482682 cites W1885185971 @default.
- W3208482682 cites W1924770834 @default.
- W3208482682 cites W1933349210 @default.
- W3208482682 cites W194577561 @default.
- W3208482682 cites W1993277309 @default.
- W3208482682 cites W2099471712 @default.
- W3208482682 cites W2102605133 @default.
- W3208482682 cites W2143612262 @default.
- W3208482682 cites W2144796873 @default.
- W3208482682 cites W2151689215 @default.
- W3208482682 cites W2250895046 @default.
- W3208482682 cites W2257408573 @default.
- W3208482682 cites W2324076434 @default.
- W3208482682 cites W2471768434 @default.
- W3208482682 cites W2557626841 @default.
- W3208482682 cites W2768661419 @default.
- W3208482682 cites W2783549597 @default.
- W3208482682 cites W2803367139 @default.
- W3208482682 cites W2886308074 @default.
- W3208482682 cites W2895520533 @default.
- W3208482682 cites W2900082762 @default.
- W3208482682 cites W2914773199 @default.
- W3208482682 cites W2950297087 @default.
- W3208482682 cites W2951873722 @default.
- W3208482682 cites W2962742544 @default.
- W3208482682 cites W2962824366 @default.
- W3208482682 cites W2962883855 @default.
- W3208482682 cites W2963341956 @default.
- W3208482682 cites W2963403868 @default.
- W3208482682 cites W2963748384 @default.
- W3208482682 cites W2963790827 @default.
- W3208482682 cites W2963797754 @default.
- W3208482682 cites W2963807318 @default.
- W3208482682 cites W2963963856 @default.
- W3208482682 cites W2964011461 @default.
- W3208482682 cites W2964135318 @default.
- W3208482682 cites W2981578854 @default.
- W3208482682 cites W2998702515 @default.
- W3208482682 cites W3023993913 @default.
- W3208482682 cites W3029418112 @default.
- W3208482682 cites W3033461281 @default.
- W3208482682 cites W3035016936 @default.
- W3208482682 cites W3095374178 @default.
- W3208482682 cites W3101499503 @default.
- W3208482682 cites W3104324613 @default.
- W3208482682 cites W3116954826 @default.
- W3208482682 cites W3124006607 @default.
- W3208482682 cites W3172514680 @default.
- W3208482682 cites W3177423475 @default.
- W3208482682 cites W3210978902 @default.
- W3208482682 cites W3213632375 @default.
- W3208482682 cites W343636949 @default.
- W3208482682 cites W92374804 @default.
- W3208482682 hasPublicationYear "2021" @default.
- W3208482682 type Work @default.
- W3208482682 sameAs 3208482682 @default.
- W3208482682 citedByCount "0" @default.
- W3208482682 crossrefType "posted-content" @default.
- W3208482682 hasAuthorship W3208482682A5002212263 @default.
- W3208482682 hasAuthorship W3208482682A5043287647 @default.
- W3208482682 hasConcept C113238511 @default.
- W3208482682 hasConcept C12362212 @default.
- W3208482682 hasConcept C151730666 @default.
- W3208482682 hasConcept C153083717 @default.
- W3208482682 hasConcept C153180895 @default.
- W3208482682 hasConcept C154945302 @default.
- W3208482682 hasConcept C199360897 @default.
- W3208482682 hasConcept C204321447 @default.
- W3208482682 hasConcept C2524010 @default.
- W3208482682 hasConcept C2779343474 @default.
- W3208482682 hasConcept C33923547 @default.
- W3208482682 hasConcept C41008148 @default.
- W3208482682 hasConcept C41608201 @default.
- W3208482682 hasConcept C43521106 @default.
- W3208482682 hasConcept C86803240 @default.
- W3208482682 hasConceptScore W3208482682C113238511 @default.
- W3208482682 hasConceptScore W3208482682C12362212 @default.
- W3208482682 hasConceptScore W3208482682C151730666 @default.
- W3208482682 hasConceptScore W3208482682C153083717 @default.
- W3208482682 hasConceptScore W3208482682C153180895 @default.
- W3208482682 hasConceptScore W3208482682C154945302 @default.
- W3208482682 hasConceptScore W3208482682C199360897 @default.
- W3208482682 hasConceptScore W3208482682C204321447 @default.
- W3208482682 hasConceptScore W3208482682C2524010 @default.
- W3208482682 hasConceptScore W3208482682C2779343474 @default.
- W3208482682 hasConceptScore W3208482682C33923547 @default.
- W3208482682 hasConceptScore W3208482682C41008148 @default.
- W3208482682 hasConceptScore W3208482682C41608201 @default.