Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208504502> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3208504502 abstract "Bearing fault diagnosis plays an important role in the field of modern industry. Although convolution neural network achieves good results, large amount of parameters costs a lot of calculation, which brings challenges to the deployment of fault diagnosis tasks in low computational power equipments. To solve the problems, an novel CNN model ShuffleNet2MC based on improved Shufflenetv2 network is proposed. Firstly, Depthwise convolution and Channel Shuffle are used to reduce the computational cost while ensuring the accuracy of diagnosis computation; Secondly, mixed convolution is used to extract the features of different resolutions through multi-scale and multi-channel method, which improves the accuracy of the model; Finally, K-means quantization is applied to the model, which greatly reduces the GFLOPS of the model and further improves the performance of the model while ensuring that the accuracy is basically unchanged. A large number of experiments on the bearing fault dataset of Western Reserve University show that: The times of floating point operation and classification accuracy of ShufflenetV2 are 0.001GFLOPS and 97.9% respectively in the task of fault diagnosis. Compared with other models, it not only reduces the model parameters and compresses the model, but also gets better classification accuracy." @default.
- W3208504502 created "2021-11-08" @default.
- W3208504502 creator A5001097658 @default.
- W3208504502 creator A5081938339 @default.
- W3208504502 creator A5084252696 @default.
- W3208504502 date "2021-06-01" @default.
- W3208504502 modified "2023-09-27" @default.
- W3208504502 title "ShuffleNet2MC: A method of light weight fault diagnosis" @default.
- W3208504502 cites W2097117768 @default.
- W3208504502 cites W2589808763 @default.
- W3208504502 cites W2767031373 @default.
- W3208504502 cites W2911003490 @default.
- W3208504502 cites W2922509574 @default.
- W3208504502 cites W3033236487 @default.
- W3208504502 cites W3042706401 @default.
- W3208504502 cites W3094441388 @default.
- W3208504502 cites W3099562783 @default.
- W3208504502 doi "https://doi.org/10.1109/iccea53728.2021.00060" @default.
- W3208504502 hasPublicationYear "2021" @default.
- W3208504502 type Work @default.
- W3208504502 sameAs 3208504502 @default.
- W3208504502 citedByCount "2" @default.
- W3208504502 countsByYear W32085045022022 @default.
- W3208504502 crossrefType "proceedings-article" @default.
- W3208504502 hasAuthorship W3208504502A5001097658 @default.
- W3208504502 hasAuthorship W3208504502A5081938339 @default.
- W3208504502 hasAuthorship W3208504502A5084252696 @default.
- W3208504502 hasConcept C11413529 @default.
- W3208504502 hasConcept C127313418 @default.
- W3208504502 hasConcept C154945302 @default.
- W3208504502 hasConcept C165205528 @default.
- W3208504502 hasConcept C173608175 @default.
- W3208504502 hasConcept C175551986 @default.
- W3208504502 hasConcept C28855332 @default.
- W3208504502 hasConcept C3826847 @default.
- W3208504502 hasConcept C41008148 @default.
- W3208504502 hasConcept C45347329 @default.
- W3208504502 hasConcept C45374587 @default.
- W3208504502 hasConcept C50644808 @default.
- W3208504502 hasConcept C81363708 @default.
- W3208504502 hasConceptScore W3208504502C11413529 @default.
- W3208504502 hasConceptScore W3208504502C127313418 @default.
- W3208504502 hasConceptScore W3208504502C154945302 @default.
- W3208504502 hasConceptScore W3208504502C165205528 @default.
- W3208504502 hasConceptScore W3208504502C173608175 @default.
- W3208504502 hasConceptScore W3208504502C175551986 @default.
- W3208504502 hasConceptScore W3208504502C28855332 @default.
- W3208504502 hasConceptScore W3208504502C3826847 @default.
- W3208504502 hasConceptScore W3208504502C41008148 @default.
- W3208504502 hasConceptScore W3208504502C45347329 @default.
- W3208504502 hasConceptScore W3208504502C45374587 @default.
- W3208504502 hasConceptScore W3208504502C50644808 @default.
- W3208504502 hasConceptScore W3208504502C81363708 @default.
- W3208504502 hasFunder F4320337504 @default.
- W3208504502 hasLocation W32085045021 @default.
- W3208504502 hasOpenAccess W3208504502 @default.
- W3208504502 hasPrimaryLocation W32085045021 @default.
- W3208504502 hasRelatedWork W2317796602 @default.
- W3208504502 hasRelatedWork W2513928851 @default.
- W3208504502 hasRelatedWork W2766634277 @default.
- W3208504502 hasRelatedWork W2798769807 @default.
- W3208504502 hasRelatedWork W2963324979 @default.
- W3208504502 hasRelatedWork W2995343971 @default.
- W3208504502 hasRelatedWork W3047530476 @default.
- W3208504502 hasRelatedWork W3072011699 @default.
- W3208504502 hasRelatedWork W3211499248 @default.
- W3208504502 hasRelatedWork W4312417841 @default.
- W3208504502 isParatext "false" @default.
- W3208504502 isRetracted "false" @default.
- W3208504502 magId "3208504502" @default.
- W3208504502 workType "article" @default.