Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208527138> ?p ?o ?g. }
- W3208527138 abstract "We consider a least-squares variational kernel-based method for numerical solution of second order elliptic partial differential equations on a multi-dimensional domain. In this setting it is not assumed that the differential operator is self-adjoint or positive definite as it should be in the Rayleigh-Ritz setting. However, the new scheme leads to a symmetric and positive definite algebraic system of equations. Moreover, the resulting method does not rely on certain subspaces satisfying the boundary conditions. The trial space for discretization is provided via standard kernels that reproduce the Sobolev spaces as their native spaces. The error analysis of the method is given, but it is partly subjected to an inverse inequality on the boundary which is still an open problem. The condition number of the final linear system is approximated in terms of the smoothness of the kernel and the discretization quality. Finally, the results of some computational experiments support the theoretical error bounds." @default.
- W3208527138 created "2021-11-08" @default.
- W3208527138 creator A5024652899 @default.
- W3208527138 creator A5061434040 @default.
- W3208527138 creator A5068934056 @default.
- W3208527138 date "2021-10-25" @default.
- W3208527138 modified "2023-09-27" @default.
- W3208527138 title "Error and Stability Estimates of a Least-Squares Variational Kernel-Based Method for Second Order Elliptic PDEs." @default.
- W3208527138 cites W144669444 @default.
- W3208527138 cites W1486164486 @default.
- W3208527138 cites W1547403762 @default.
- W3208527138 cites W1555557982 @default.
- W3208527138 cites W1597209545 @default.
- W3208527138 cites W1614588236 @default.
- W3208527138 cites W1653619892 @default.
- W3208527138 cites W1674659126 @default.
- W3208527138 cites W1964985389 @default.
- W3208527138 cites W1977042664 @default.
- W3208527138 cites W1988793248 @default.
- W3208527138 cites W1997497924 @default.
- W3208527138 cites W1999025826 @default.
- W3208527138 cites W2002388618 @default.
- W3208527138 cites W2011173403 @default.
- W3208527138 cites W2011290221 @default.
- W3208527138 cites W2018469473 @default.
- W3208527138 cites W2019180174 @default.
- W3208527138 cites W2028287628 @default.
- W3208527138 cites W2028937414 @default.
- W3208527138 cites W2030071064 @default.
- W3208527138 cites W2035637093 @default.
- W3208527138 cites W2041620610 @default.
- W3208527138 cites W2046643352 @default.
- W3208527138 cites W2051169944 @default.
- W3208527138 cites W2052524535 @default.
- W3208527138 cites W2060100114 @default.
- W3208527138 cites W2065920748 @default.
- W3208527138 cites W2071942565 @default.
- W3208527138 cites W2073370369 @default.
- W3208527138 cites W2076577157 @default.
- W3208527138 cites W2080928127 @default.
- W3208527138 cites W2088822475 @default.
- W3208527138 cites W2099656682 @default.
- W3208527138 cites W2134496919 @default.
- W3208527138 cites W2155307607 @default.
- W3208527138 cites W2160812957 @default.
- W3208527138 cites W2161591817 @default.
- W3208527138 cites W2477897524 @default.
- W3208527138 cites W2489432230 @default.
- W3208527138 cites W2496234263 @default.
- W3208527138 cites W2562220820 @default.
- W3208527138 cites W2589255139 @default.
- W3208527138 cites W2784974683 @default.
- W3208527138 cites W2963222561 @default.
- W3208527138 cites W2964328368 @default.
- W3208527138 cites W3149667697 @default.
- W3208527138 cites W111379773 @default.
- W3208527138 cites W3147379677 @default.
- W3208527138 hasPublicationYear "2021" @default.
- W3208527138 type Work @default.
- W3208527138 sameAs 3208527138 @default.
- W3208527138 citedByCount "0" @default.
- W3208527138 crossrefType "posted-content" @default.
- W3208527138 hasAuthorship W3208527138A5024652899 @default.
- W3208527138 hasAuthorship W3208527138A5061434040 @default.
- W3208527138 hasAuthorship W3208527138A5068934056 @default.
- W3208527138 hasConcept C121332964 @default.
- W3208527138 hasConcept C12362212 @default.
- W3208527138 hasConcept C134306372 @default.
- W3208527138 hasConcept C158693339 @default.
- W3208527138 hasConcept C182310444 @default.
- W3208527138 hasConcept C202444582 @default.
- W3208527138 hasConcept C28826006 @default.
- W3208527138 hasConcept C33923547 @default.
- W3208527138 hasConcept C49712288 @default.
- W3208527138 hasConcept C62520636 @default.
- W3208527138 hasConcept C70610323 @default.
- W3208527138 hasConcept C73000952 @default.
- W3208527138 hasConcept C74193536 @default.
- W3208527138 hasConcept C93779851 @default.
- W3208527138 hasConcept C99730327 @default.
- W3208527138 hasConceptScore W3208527138C121332964 @default.
- W3208527138 hasConceptScore W3208527138C12362212 @default.
- W3208527138 hasConceptScore W3208527138C134306372 @default.
- W3208527138 hasConceptScore W3208527138C158693339 @default.
- W3208527138 hasConceptScore W3208527138C182310444 @default.
- W3208527138 hasConceptScore W3208527138C202444582 @default.
- W3208527138 hasConceptScore W3208527138C28826006 @default.
- W3208527138 hasConceptScore W3208527138C33923547 @default.
- W3208527138 hasConceptScore W3208527138C49712288 @default.
- W3208527138 hasConceptScore W3208527138C62520636 @default.
- W3208527138 hasConceptScore W3208527138C70610323 @default.
- W3208527138 hasConceptScore W3208527138C73000952 @default.
- W3208527138 hasConceptScore W3208527138C74193536 @default.
- W3208527138 hasConceptScore W3208527138C93779851 @default.
- W3208527138 hasConceptScore W3208527138C99730327 @default.
- W3208527138 hasLocation W32085271381 @default.
- W3208527138 hasOpenAccess W3208527138 @default.
- W3208527138 hasPrimaryLocation W32085271381 @default.
- W3208527138 hasRelatedWork W1934446659 @default.
- W3208527138 hasRelatedWork W1972531978 @default.