Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208535570> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3208535570 endingPage "116112" @default.
- W3208535570 startingPage "116112" @default.
- W3208535570 abstract "Despite advances in Deep Learning, the Convolutional Neural Networks methods still manifest limitations in medical applications because datasets are usually restricted in the number of samples or include poorly contrasted images. Such a case is found in stenosis detection using X-rays coronary angiography. In this study, the emerging field of quantum computing is applied in the context of hybrid neural networks. So, a hybrid transfer-learning paradigm is used for stenosis detection, where a quantum network drives and improves the performance of a pre-trained classical network. An intermediate layer between the classical and quantum network post-processes the classical features by mapping them into a hypersphere of fixed radius through a hyperbolic tangent function. Next, these normalized features are processed in the quantum network, and through a SoftMax function, the class probabilities are obtained: stenosis and non-stenosis. Furthermore, a distributed variational quantum circuit is implemented to split the data into multiple quantum circuits within the quantum network, improving the training time without compromising the stenosis detection performance. The proposed method is evaluated on a small X-ray coronary angiography dataset containing 250 image patches (50%–50% of positive and negative stenosis cases). The hybrid classical–quantum network significantly outperformed the classical network. Evaluation results showed a boost concerning the classical transfer learning paradigm in the accuracy of 9%, recall of 20%, and F1-score of 11%, reaching 91.8033%, 94.9153%, and 91.8033%, respectively." @default.
- W3208535570 created "2021-11-08" @default.
- W3208535570 creator A5002283995 @default.
- W3208535570 creator A5021915238 @default.
- W3208535570 creator A5043514066 @default.
- W3208535570 creator A5057731762 @default.
- W3208535570 date "2022-03-01" @default.
- W3208535570 modified "2023-10-18" @default.
- W3208535570 title "Hybrid classical–quantum Convolutional Neural Network for stenosis detection in X-ray coronary angiography" @default.
- W3208535570 cites W1631356911 @default.
- W3208535570 cites W2069239035 @default.
- W3208535570 cites W2112796928 @default.
- W3208535570 cites W2165698076 @default.
- W3208535570 cites W2346062110 @default.
- W3208535570 cites W2559394418 @default.
- W3208535570 cites W2929211992 @default.
- W3208535570 cites W2940901905 @default.
- W3208535570 cites W2995742898 @default.
- W3208535570 cites W2998957378 @default.
- W3208535570 cites W3006982732 @default.
- W3208535570 cites W3007475506 @default.
- W3208535570 cites W3023012156 @default.
- W3208535570 cites W3025269924 @default.
- W3208535570 cites W3035050947 @default.
- W3208535570 cites W3091978650 @default.
- W3208535570 cites W3096903564 @default.
- W3208535570 cites W3101122608 @default.
- W3208535570 cites W3103794906 @default.
- W3208535570 doi "https://doi.org/10.1016/j.eswa.2021.116112" @default.
- W3208535570 hasPublicationYear "2022" @default.
- W3208535570 type Work @default.
- W3208535570 sameAs 3208535570 @default.
- W3208535570 citedByCount "17" @default.
- W3208535570 countsByYear W32085355702022 @default.
- W3208535570 countsByYear W32085355702023 @default.
- W3208535570 crossrefType "journal-article" @default.
- W3208535570 hasAuthorship W3208535570A5002283995 @default.
- W3208535570 hasAuthorship W3208535570A5021915238 @default.
- W3208535570 hasAuthorship W3208535570A5043514066 @default.
- W3208535570 hasAuthorship W3208535570A5057731762 @default.
- W3208535570 hasConcept C11413529 @default.
- W3208535570 hasConcept C126838900 @default.
- W3208535570 hasConcept C151730666 @default.
- W3208535570 hasConcept C153180895 @default.
- W3208535570 hasConcept C154945302 @default.
- W3208535570 hasConcept C188441871 @default.
- W3208535570 hasConcept C2779343474 @default.
- W3208535570 hasConcept C2780007028 @default.
- W3208535570 hasConcept C33923547 @default.
- W3208535570 hasConcept C41008148 @default.
- W3208535570 hasConcept C71924100 @default.
- W3208535570 hasConcept C81363708 @default.
- W3208535570 hasConcept C86803240 @default.
- W3208535570 hasConceptScore W3208535570C11413529 @default.
- W3208535570 hasConceptScore W3208535570C126838900 @default.
- W3208535570 hasConceptScore W3208535570C151730666 @default.
- W3208535570 hasConceptScore W3208535570C153180895 @default.
- W3208535570 hasConceptScore W3208535570C154945302 @default.
- W3208535570 hasConceptScore W3208535570C188441871 @default.
- W3208535570 hasConceptScore W3208535570C2779343474 @default.
- W3208535570 hasConceptScore W3208535570C2780007028 @default.
- W3208535570 hasConceptScore W3208535570C33923547 @default.
- W3208535570 hasConceptScore W3208535570C41008148 @default.
- W3208535570 hasConceptScore W3208535570C71924100 @default.
- W3208535570 hasConceptScore W3208535570C81363708 @default.
- W3208535570 hasConceptScore W3208535570C86803240 @default.
- W3208535570 hasLocation W32085355701 @default.
- W3208535570 hasOpenAccess W3208535570 @default.
- W3208535570 hasPrimaryLocation W32085355701 @default.
- W3208535570 hasRelatedWork W2743258233 @default.
- W3208535570 hasRelatedWork W2758063741 @default.
- W3208535570 hasRelatedWork W2883041339 @default.
- W3208535570 hasRelatedWork W2908861653 @default.
- W3208535570 hasRelatedWork W2977314777 @default.
- W3208535570 hasRelatedWork W3171731982 @default.
- W3208535570 hasRelatedWork W3200445080 @default.
- W3208535570 hasRelatedWork W3208883981 @default.
- W3208535570 hasRelatedWork W4307834408 @default.
- W3208535570 hasRelatedWork W4320925816 @default.
- W3208535570 hasVolume "189" @default.
- W3208535570 isParatext "false" @default.
- W3208535570 isRetracted "false" @default.
- W3208535570 magId "3208535570" @default.
- W3208535570 workType "article" @default.