Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208552103> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3208552103 abstract "Electronic health record is an important source for clinical researches and applications, and errors inevitably occur in the data, which could lead to severe damages to both patients and hospital services. One of such error is the mismatches between diagnoses and prescriptions, which we address as 'medication anomaly' in the paper, and clinicians used to manually identify and correct them. With the development of machine learning techniques, researchers are able to train specific model for the task, but the process still requires expert knowledge to construct proper features, and few semantic relations are considered. In this paper, we propose a simple, yet effective detection method that tackles the problem by detecting the semantic inconsistency between diagnoses and prescriptions. Unlike traditional outlier or anomaly detection, the scheme uses continuous bag of words to construct the semantic connection between specific central words and their surrounding context. The detection of medication anomaly is transformed into identifying the least possible central word based on given context. To help distinguish the anomaly from normal context, we also incorporate a ranking accumulation strategy. The experiments were conducted on two real hospital electronic medical records, and the topN accuracy of the proposed method increased by 3.91 to 10.91% and 0.68 to 2.13% on the datasets, respectively, which is highly competitive to other traditional machine learning-based approaches." @default.
- W3208552103 created "2021-11-08" @default.
- W3208552103 creator A5009453340 @default.
- W3208552103 creator A5034282410 @default.
- W3208552103 creator A5048267931 @default.
- W3208552103 creator A5048756500 @default.
- W3208552103 creator A5071839367 @default.
- W3208552103 creator A5074965982 @default.
- W3208552103 creator A5082172500 @default.
- W3208552103 date "2019-08-19" @default.
- W3208552103 modified "2023-09-26" @default.
- W3208552103 title "CBOWRA: A Representation Learning Approach for Medication Anomaly Detection" @default.
- W3208552103 doi "https://doi.org/10.48550/arxiv.1908.07147" @default.
- W3208552103 hasPublicationYear "2019" @default.
- W3208552103 type Work @default.
- W3208552103 sameAs 3208552103 @default.
- W3208552103 citedByCount "1" @default.
- W3208552103 countsByYear W32085521032021 @default.
- W3208552103 crossrefType "posted-content" @default.
- W3208552103 hasAuthorship W3208552103A5009453340 @default.
- W3208552103 hasAuthorship W3208552103A5034282410 @default.
- W3208552103 hasAuthorship W3208552103A5048267931 @default.
- W3208552103 hasAuthorship W3208552103A5048756500 @default.
- W3208552103 hasAuthorship W3208552103A5071839367 @default.
- W3208552103 hasAuthorship W3208552103A5074965982 @default.
- W3208552103 hasAuthorship W3208552103A5082172500 @default.
- W3208552103 hasBestOaLocation W32085521031 @default.
- W3208552103 hasConcept C111919701 @default.
- W3208552103 hasConcept C119857082 @default.
- W3208552103 hasConcept C121332964 @default.
- W3208552103 hasConcept C124101348 @default.
- W3208552103 hasConcept C12997251 @default.
- W3208552103 hasConcept C142724271 @default.
- W3208552103 hasConcept C151730666 @default.
- W3208552103 hasConcept C154945302 @default.
- W3208552103 hasConcept C17744445 @default.
- W3208552103 hasConcept C189430467 @default.
- W3208552103 hasConcept C199360897 @default.
- W3208552103 hasConcept C199539241 @default.
- W3208552103 hasConcept C204321447 @default.
- W3208552103 hasConcept C23123220 @default.
- W3208552103 hasConcept C26873012 @default.
- W3208552103 hasConcept C2776359362 @default.
- W3208552103 hasConcept C2779343474 @default.
- W3208552103 hasConcept C2780801425 @default.
- W3208552103 hasConcept C41008148 @default.
- W3208552103 hasConcept C534262118 @default.
- W3208552103 hasConcept C71924100 @default.
- W3208552103 hasConcept C739882 @default.
- W3208552103 hasConcept C79337645 @default.
- W3208552103 hasConcept C86803240 @default.
- W3208552103 hasConcept C94625758 @default.
- W3208552103 hasConcept C98045186 @default.
- W3208552103 hasConceptScore W3208552103C111919701 @default.
- W3208552103 hasConceptScore W3208552103C119857082 @default.
- W3208552103 hasConceptScore W3208552103C121332964 @default.
- W3208552103 hasConceptScore W3208552103C124101348 @default.
- W3208552103 hasConceptScore W3208552103C12997251 @default.
- W3208552103 hasConceptScore W3208552103C142724271 @default.
- W3208552103 hasConceptScore W3208552103C151730666 @default.
- W3208552103 hasConceptScore W3208552103C154945302 @default.
- W3208552103 hasConceptScore W3208552103C17744445 @default.
- W3208552103 hasConceptScore W3208552103C189430467 @default.
- W3208552103 hasConceptScore W3208552103C199360897 @default.
- W3208552103 hasConceptScore W3208552103C199539241 @default.
- W3208552103 hasConceptScore W3208552103C204321447 @default.
- W3208552103 hasConceptScore W3208552103C23123220 @default.
- W3208552103 hasConceptScore W3208552103C26873012 @default.
- W3208552103 hasConceptScore W3208552103C2776359362 @default.
- W3208552103 hasConceptScore W3208552103C2779343474 @default.
- W3208552103 hasConceptScore W3208552103C2780801425 @default.
- W3208552103 hasConceptScore W3208552103C41008148 @default.
- W3208552103 hasConceptScore W3208552103C534262118 @default.
- W3208552103 hasConceptScore W3208552103C71924100 @default.
- W3208552103 hasConceptScore W3208552103C739882 @default.
- W3208552103 hasConceptScore W3208552103C79337645 @default.
- W3208552103 hasConceptScore W3208552103C86803240 @default.
- W3208552103 hasConceptScore W3208552103C94625758 @default.
- W3208552103 hasConceptScore W3208552103C98045186 @default.
- W3208552103 hasLocation W32085521031 @default.
- W3208552103 hasOpenAccess W3208552103 @default.
- W3208552103 hasPrimaryLocation W32085521031 @default.
- W3208552103 hasRelatedWork W1595351371 @default.
- W3208552103 hasRelatedWork W2099190580 @default.
- W3208552103 hasRelatedWork W2103153231 @default.
- W3208552103 hasRelatedWork W2163901716 @default.
- W3208552103 hasRelatedWork W2230433129 @default.
- W3208552103 hasRelatedWork W2390515779 @default.
- W3208552103 hasRelatedWork W2606848831 @default.
- W3208552103 hasRelatedWork W2912112202 @default.
- W3208552103 hasRelatedWork W3111802945 @default.
- W3208552103 hasRelatedWork W3116762327 @default.
- W3208552103 isParatext "false" @default.
- W3208552103 isRetracted "false" @default.
- W3208552103 magId "3208552103" @default.
- W3208552103 workType "article" @default.