Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208555436> ?p ?o ?g. }
- W3208555436 abstract "In fluid physics, data-driven models to enhance or accelerate time to solution are becoming increasingly popular for many application domains, such as alternatives to turbulence closures, system surrogates, or for new physics discovery. In the context of reduced order models of high-dimensional time-dependent fluid systems, machine learning methods grant the benefit of automated learning from data, but the burden of a model lies on its reduced-order representation of both the fluid state and physical dynamics. In this work, we build a physics-constrained, data-driven reduced order model for Navier–Stokes equations to approximate spatiotemporal fluid dynamics in the canonical case of isotropic turbulence in a triply periodic box. The model design choices mimic numerical and physical constraints by, for example, implicitly enforcing the incompressibility constraint and utilizing continuous neural ordinary differential equations for tracking the evolution of the governing differential equation. We demonstrate this technique on a three-dimensional, moderate Reynolds number turbulent fluid flow. In assessing the statistical quality and characteristics of the machine-learned model through rigorous diagnostic tests, we find that our model is capable of reconstructing the dynamics of the flow over large integral timescales, favoring accuracy at the larger length scales. More significantly, comprehensive diagnostics suggest that physically interpretable model parameters, corresponding to the representations of the fluid state and dynamics, have attributable and quantifiable impact on the quality of the model predictions and computational complexity." @default.
- W3208555436 created "2021-11-08" @default.
- W3208555436 creator A5015140257 @default.
- W3208555436 creator A5028937474 @default.
- W3208555436 creator A5043195923 @default.
- W3208555436 creator A5050602188 @default.
- W3208555436 creator A5055844388 @default.
- W3208555436 creator A5058405322 @default.
- W3208555436 creator A5058533733 @default.
- W3208555436 creator A5067415921 @default.
- W3208555436 creator A5068753065 @default.
- W3208555436 date "2022-11-01" @default.
- W3208555436 modified "2023-10-07" @default.
- W3208555436 title "Validation and parameterization of a novel physics-constrained neural dynamics model applied to turbulent fluid flow" @default.
- W3208555436 cites W1525542318 @default.
- W3208555436 cites W1965317809 @default.
- W3208555436 cites W1983107146 @default.
- W3208555436 cites W1994089881 @default.
- W3208555436 cites W2051309549 @default.
- W3208555436 cites W2067696760 @default.
- W3208555436 cites W2090530203 @default.
- W3208555436 cites W2116055501 @default.
- W3208555436 cites W2131908956 @default.
- W3208555436 cites W2147414751 @default.
- W3208555436 cites W2619381903 @default.
- W3208555436 cites W2795982117 @default.
- W3208555436 cites W2899283552 @default.
- W3208555436 cites W2961350526 @default.
- W3208555436 cites W2973680425 @default.
- W3208555436 cites W2985630280 @default.
- W3208555436 cites W3003922491 @default.
- W3208555436 cites W3012007521 @default.
- W3208555436 cites W3016780373 @default.
- W3208555436 cites W3091986675 @default.
- W3208555436 cites W3102140816 @default.
- W3208555436 cites W3103803625 @default.
- W3208555436 cites W3105919389 @default.
- W3208555436 cites W3124389259 @default.
- W3208555436 cites W3126940265 @default.
- W3208555436 cites W3150028748 @default.
- W3208555436 cites W3161200675 @default.
- W3208555436 cites W3162533428 @default.
- W3208555436 cites W3166586430 @default.
- W3208555436 cites W3176843930 @default.
- W3208555436 cites W3193240208 @default.
- W3208555436 cites W3206518740 @default.
- W3208555436 cites W3216730492 @default.
- W3208555436 cites W4206720317 @default.
- W3208555436 cites W4210729890 @default.
- W3208555436 cites W4220800106 @default.
- W3208555436 cites W4224314625 @default.
- W3208555436 cites W4225463282 @default.
- W3208555436 cites W4280617908 @default.
- W3208555436 cites W4286909924 @default.
- W3208555436 cites W4304191791 @default.
- W3208555436 doi "https://doi.org/10.1063/5.0122115" @default.
- W3208555436 hasPublicationYear "2022" @default.
- W3208555436 type Work @default.
- W3208555436 sameAs 3208555436 @default.
- W3208555436 citedByCount "0" @default.
- W3208555436 crossrefType "journal-article" @default.
- W3208555436 hasAuthorship W3208555436A5015140257 @default.
- W3208555436 hasAuthorship W3208555436A5028937474 @default.
- W3208555436 hasAuthorship W3208555436A5043195923 @default.
- W3208555436 hasAuthorship W3208555436A5050602188 @default.
- W3208555436 hasAuthorship W3208555436A5055844388 @default.
- W3208555436 hasAuthorship W3208555436A5058405322 @default.
- W3208555436 hasAuthorship W3208555436A5058533733 @default.
- W3208555436 hasAuthorship W3208555436A5067415921 @default.
- W3208555436 hasAuthorship W3208555436A5068753065 @default.
- W3208555436 hasBestOaLocation W32085554365 @default.
- W3208555436 hasConcept C121332964 @default.
- W3208555436 hasConcept C121864883 @default.
- W3208555436 hasConcept C145290371 @default.
- W3208555436 hasConcept C151730666 @default.
- W3208555436 hasConcept C1633027 @default.
- W3208555436 hasConcept C17744445 @default.
- W3208555436 hasConcept C182748727 @default.
- W3208555436 hasConcept C184050105 @default.
- W3208555436 hasConcept C196558001 @default.
- W3208555436 hasConcept C199539241 @default.
- W3208555436 hasConcept C2776359362 @default.
- W3208555436 hasConcept C2779343474 @default.
- W3208555436 hasConcept C2781278361 @default.
- W3208555436 hasConcept C28826006 @default.
- W3208555436 hasConcept C33923547 @default.
- W3208555436 hasConcept C38349280 @default.
- W3208555436 hasConcept C51544822 @default.
- W3208555436 hasConcept C57879066 @default.
- W3208555436 hasConcept C62520636 @default.
- W3208555436 hasConcept C74650414 @default.
- W3208555436 hasConcept C78045399 @default.
- W3208555436 hasConcept C84655787 @default.
- W3208555436 hasConcept C86803240 @default.
- W3208555436 hasConcept C90278072 @default.
- W3208555436 hasConcept C94625758 @default.
- W3208555436 hasConceptScore W3208555436C121332964 @default.
- W3208555436 hasConceptScore W3208555436C121864883 @default.
- W3208555436 hasConceptScore W3208555436C145290371 @default.
- W3208555436 hasConceptScore W3208555436C151730666 @default.