Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208561576> ?p ?o ?g. }
- W3208561576 endingPage "146809" @default.
- W3208561576 startingPage "146797" @default.
- W3208561576 abstract "Supervised machine learning algorithms are powerful classification techniques commonly used to build prediction models that help diagnose the disease early. However, some challenges like overfitting and underfitting need to be overcome while building the model. This paper introduces hybrid classifiers using the ensembled model with a majority voting technique to improve prediction accuracy. Furthermore, a proposed preprocessing technique and features selection based on a genetic algorithm is suggested to enhance prediction performance and overall time consumption. In addition, the 10-folds cross-validation technique is used to overcome the overfitting problem. Experiments were performed on a dataset for cardiovascular patients from the UCI Machine Learning Repository. Through a comparative analytical approach, the study results indicated that the proposed ensemble classifier model achieved a classification accuracy of 98.18% higher than the rest of the relevant developments in the study." @default.
- W3208561576 created "2021-11-08" @default.
- W3208561576 creator A5025156069 @default.
- W3208561576 creator A5059723142 @default.
- W3208561576 creator A5062839054 @default.
- W3208561576 date "2021-01-01" @default.
- W3208561576 modified "2023-10-18" @default.
- W3208561576 title "HDPF: Heart Disease Prediction Framework Based on Hybrid Classifiers and Genetic Algorithm" @default.
- W3208561576 cites W1576523742 @default.
- W3208561576 cites W2095554003 @default.
- W3208561576 cites W2126667102 @default.
- W3208561576 cites W2521029800 @default.
- W3208561576 cites W2752038267 @default.
- W3208561576 cites W2774583472 @default.
- W3208561576 cites W2790878348 @default.
- W3208561576 cites W2795340517 @default.
- W3208561576 cites W2848154351 @default.
- W3208561576 cites W2897120700 @default.
- W3208561576 cites W2900794383 @default.
- W3208561576 cites W2903099708 @default.
- W3208561576 cites W2943511409 @default.
- W3208561576 cites W2954788759 @default.
- W3208561576 cites W2961085424 @default.
- W3208561576 cites W2974030101 @default.
- W3208561576 cites W2981790883 @default.
- W3208561576 cites W2990252557 @default.
- W3208561576 cites W2998490530 @default.
- W3208561576 cites W3018390422 @default.
- W3208561576 cites W3044482460 @default.
- W3208561576 cites W3113178943 @default.
- W3208561576 doi "https://doi.org/10.1109/access.2021.3122789" @default.
- W3208561576 hasPublicationYear "2021" @default.
- W3208561576 type Work @default.
- W3208561576 sameAs 3208561576 @default.
- W3208561576 citedByCount "14" @default.
- W3208561576 countsByYear W32085615762022 @default.
- W3208561576 countsByYear W32085615762023 @default.
- W3208561576 crossrefType "journal-article" @default.
- W3208561576 hasAuthorship W3208561576A5025156069 @default.
- W3208561576 hasAuthorship W3208561576A5059723142 @default.
- W3208561576 hasAuthorship W3208561576A5062839054 @default.
- W3208561576 hasBestOaLocation W32085615761 @default.
- W3208561576 hasConcept C104317684 @default.
- W3208561576 hasConcept C110083411 @default.
- W3208561576 hasConcept C119857082 @default.
- W3208561576 hasConcept C124101348 @default.
- W3208561576 hasConcept C148483581 @default.
- W3208561576 hasConcept C150194340 @default.
- W3208561576 hasConcept C153180895 @default.
- W3208561576 hasConcept C153668964 @default.
- W3208561576 hasConcept C154945302 @default.
- W3208561576 hasConcept C185592680 @default.
- W3208561576 hasConcept C22019652 @default.
- W3208561576 hasConcept C27181475 @default.
- W3208561576 hasConcept C2984324147 @default.
- W3208561576 hasConcept C34736171 @default.
- W3208561576 hasConcept C41008148 @default.
- W3208561576 hasConcept C45942800 @default.
- W3208561576 hasConcept C50644808 @default.
- W3208561576 hasConcept C55493867 @default.
- W3208561576 hasConcept C8415881 @default.
- W3208561576 hasConcept C8880873 @default.
- W3208561576 hasConcept C95623464 @default.
- W3208561576 hasConceptScore W3208561576C104317684 @default.
- W3208561576 hasConceptScore W3208561576C110083411 @default.
- W3208561576 hasConceptScore W3208561576C119857082 @default.
- W3208561576 hasConceptScore W3208561576C124101348 @default.
- W3208561576 hasConceptScore W3208561576C148483581 @default.
- W3208561576 hasConceptScore W3208561576C150194340 @default.
- W3208561576 hasConceptScore W3208561576C153180895 @default.
- W3208561576 hasConceptScore W3208561576C153668964 @default.
- W3208561576 hasConceptScore W3208561576C154945302 @default.
- W3208561576 hasConceptScore W3208561576C185592680 @default.
- W3208561576 hasConceptScore W3208561576C22019652 @default.
- W3208561576 hasConceptScore W3208561576C27181475 @default.
- W3208561576 hasConceptScore W3208561576C2984324147 @default.
- W3208561576 hasConceptScore W3208561576C34736171 @default.
- W3208561576 hasConceptScore W3208561576C41008148 @default.
- W3208561576 hasConceptScore W3208561576C45942800 @default.
- W3208561576 hasConceptScore W3208561576C50644808 @default.
- W3208561576 hasConceptScore W3208561576C55493867 @default.
- W3208561576 hasConceptScore W3208561576C8415881 @default.
- W3208561576 hasConceptScore W3208561576C8880873 @default.
- W3208561576 hasConceptScore W3208561576C95623464 @default.
- W3208561576 hasLocation W32085615761 @default.
- W3208561576 hasLocation W32085615762 @default.
- W3208561576 hasOpenAccess W3208561576 @default.
- W3208561576 hasPrimaryLocation W32085615761 @default.
- W3208561576 hasRelatedWork W1979263106 @default.
- W3208561576 hasRelatedWork W2027673805 @default.
- W3208561576 hasRelatedWork W2070150642 @default.
- W3208561576 hasRelatedWork W2204684783 @default.
- W3208561576 hasRelatedWork W2738749750 @default.
- W3208561576 hasRelatedWork W3016925281 @default.
- W3208561576 hasRelatedWork W4225307033 @default.
- W3208561576 hasRelatedWork W4316087365 @default.
- W3208561576 hasRelatedWork W4321499019 @default.
- W3208561576 hasRelatedWork W4327781369 @default.