Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208570223> ?p ?o ?g. }
- W3208570223 endingPage "3803" @default.
- W3208570223 startingPage "3792" @default.
- W3208570223 abstract "ConspectusDue to the spatial confinement, two-dimensional metal chalcogenides display an extraordinary optical response and carrier transport ability. Solution-based synthesis techniques such as colloidal hot injection and ion exchange provide a cost-effective way to fabricate such low-dimensional semiconducting nanocrystals. Over the years, developments in colloidal chemistry made it possible to synthesize various kinds of ultrathin colloidal nanoplatelets, including wurtzite- and zinc blende-type CdSe, rock salt PbS, black phosphorus-like SnX (X = S or Se), hexagonal copper sulfides, selenides, and even transition metal dichalcogenides like MoS2. By altering experimental conditions and applying capping ligands with specific functional groups, it is possible to accurately tune the dimensionality, geometry, and consequently the optical properties of these colloidal metal chalcogenide crystals. Here, we review recent progress in the syntheses of two-dimensional colloidal metal chalcogenides (CMCs) and property characterizations based on optical spectroscopy or device-related measurements. The discoveries shine a light on their huge prospect for applications in areas such as photovoltaics, optoelectronics, and spintronics. In specific, the formation mechanisms of two-dimensional CMCs are discussed. The growth of colloidal nanocrystals into a two-dimensional shape is found to require either an intrinsic structural asymmetry or the assist of coexisted ligand molecules, which act as lamellar double-layer templates or facet the crystals via selective adsorption. By performing optical characterizations and especially ultrafast spectroscopic measurements on these two-dimensional CMCs, their unique electronic and excitonic features are revealed. A strong dependence of optical transition energies linked to both interband and inter-subband processes on the crystal geometry can be verified, highlighting a tremendous confinement effect in such nanocrystals. With the self-assembly of two-dimensional nanocrystals or coupling of different phases by growing heterostructures, unconventional optical performances such as charge transfer state generation or efficient Förster resonance energy transfer are discovered. The growth of large-scale individualized PbS and SnS nanosheets can be realized by facile hot injection techniques, which gives the opportunity to investigate the charge carrier behavior within a single nanocrystal. According to the results of the device-based measurements on these individualized crystals, structure asymmetry-induced anisotropic electrical responses and Rashba effects caused by a splitting of spin-resolved bands in the momentum space due to strong spin-orbit-coupling are demonstrated. It is foreseen that such geometry-controlled, large-scale two-dimensional CMCs can be the ideal materials used for designing high-efficiency photonics and electronics." @default.
- W3208570223 created "2021-11-08" @default.
- W3208570223 creator A5048472742 @default.
- W3208570223 creator A5057866719 @default.
- W3208570223 creator A5069289844 @default.
- W3208570223 creator A5080585684 @default.
- W3208570223 date "2021-10-08" @default.
- W3208570223 modified "2023-10-16" @default.
- W3208570223 title "Colloidal Two-Dimensional Metal Chalcogenides: Realization and Application of the Structural Anisotropy" @default.
- W3208570223 cites W1909960107 @default.
- W3208570223 cites W1964928625 @default.
- W3208570223 cites W1965905995 @default.
- W3208570223 cites W1968778602 @default.
- W3208570223 cites W1969849763 @default.
- W3208570223 cites W1970166010 @default.
- W3208570223 cites W1990796785 @default.
- W3208570223 cites W1996009340 @default.
- W3208570223 cites W1997317395 @default.
- W3208570223 cites W1999142744 @default.
- W3208570223 cites W2012839095 @default.
- W3208570223 cites W2018390405 @default.
- W3208570223 cites W2019401264 @default.
- W3208570223 cites W2021991765 @default.
- W3208570223 cites W2022170585 @default.
- W3208570223 cites W2048324965 @default.
- W3208570223 cites W2049280640 @default.
- W3208570223 cites W2049913136 @default.
- W3208570223 cites W2058162559 @default.
- W3208570223 cites W2063427225 @default.
- W3208570223 cites W2064200581 @default.
- W3208570223 cites W2066714320 @default.
- W3208570223 cites W2071769865 @default.
- W3208570223 cites W2078338131 @default.
- W3208570223 cites W2078833116 @default.
- W3208570223 cites W2082617002 @default.
- W3208570223 cites W2085257867 @default.
- W3208570223 cites W2086641534 @default.
- W3208570223 cites W2102882631 @default.
- W3208570223 cites W2115786064 @default.
- W3208570223 cites W2142574938 @default.
- W3208570223 cites W2165017741 @default.
- W3208570223 cites W2175116097 @default.
- W3208570223 cites W2193045276 @default.
- W3208570223 cites W2257114270 @default.
- W3208570223 cites W2292679696 @default.
- W3208570223 cites W2294282044 @default.
- W3208570223 cites W2312864438 @default.
- W3208570223 cites W2314139059 @default.
- W3208570223 cites W2322000683 @default.
- W3208570223 cites W2323506118 @default.
- W3208570223 cites W2325350316 @default.
- W3208570223 cites W2330603681 @default.
- W3208570223 cites W2335746651 @default.
- W3208570223 cites W2352333622 @default.
- W3208570223 cites W2399279899 @default.
- W3208570223 cites W2400422620 @default.
- W3208570223 cites W2465845169 @default.
- W3208570223 cites W2483935374 @default.
- W3208570223 cites W2514965341 @default.
- W3208570223 cites W2519566115 @default.
- W3208570223 cites W2583883435 @default.
- W3208570223 cites W2585619315 @default.
- W3208570223 cites W2592767240 @default.
- W3208570223 cites W2613136569 @default.
- W3208570223 cites W2622629297 @default.
- W3208570223 cites W2623839382 @default.
- W3208570223 cites W2656240048 @default.
- W3208570223 cites W2732374381 @default.
- W3208570223 cites W2775302304 @default.
- W3208570223 cites W2804333879 @default.
- W3208570223 cites W2890978531 @default.
- W3208570223 cites W2892030859 @default.
- W3208570223 cites W2896520088 @default.
- W3208570223 cites W2911651128 @default.
- W3208570223 cites W2916254179 @default.
- W3208570223 cites W2950633725 @default.
- W3208570223 cites W2964771843 @default.
- W3208570223 cites W2968864290 @default.
- W3208570223 cites W2978262251 @default.
- W3208570223 cites W3001620670 @default.
- W3208570223 cites W3033680778 @default.
- W3208570223 cites W3037965547 @default.
- W3208570223 cites W3043334842 @default.
- W3208570223 cites W3099684109 @default.
- W3208570223 cites W3099740796 @default.
- W3208570223 cites W3100423403 @default.
- W3208570223 cites W3102829127 @default.
- W3208570223 cites W3104610598 @default.
- W3208570223 cites W3105765167 @default.
- W3208570223 cites W3106233914 @default.
- W3208570223 cites W3114543180 @default.
- W3208570223 cites W3117475274 @default.
- W3208570223 cites W3118545708 @default.
- W3208570223 cites W3124716649 @default.
- W3208570223 cites W3138913835 @default.
- W3208570223 doi "https://doi.org/10.1021/acs.accounts.1c00209" @default.
- W3208570223 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34623803" @default.
- W3208570223 hasPublicationYear "2021" @default.