Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208582104> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3208582104 abstract "We have proposed convolution neural network (CNN) for influenza forecasting. Our experiment model provided time series datasets consisted of climate variables and the spatio-temporal forms. The climatic variables have included precipitation, snowfall, maximum temperature, and minimum temperature. The spatio-temporal procedure has had two features, a flu feature is the influenza patient count in different time of focus region node. The second feature is the influenza patient count from influenza carrier in adjacent region. We assumed that asymptomatic patients which is a carrier of influenza. They will be able to travel anywhere whenever needed on pedestrians, vehicles or planes in their positions. We have provided two effect flu factors in climatic and human into deep machine learning for accurate predictions of influenza outbreaks results. The integrated variables influenced effectively influenza node predictions. The research compared models on recurrent neural network (RNN), long short-term memory neural network (LSTM) and convolution neural network (CNN). The term of Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and Root Mean Square Percentage Error (RMSPE) captured for evaluate model. The performance denoted following resulted the convolution neural network (CNN) combined with Integrated climate and spatio-temporal determinant. CNN approved significant influenza forecasting more effectively than recurrent neural network (RNN) and long short-term memory neural network (LSTM)." @default.
- W3208582104 created "2021-11-08" @default.
- W3208582104 creator A5002320059 @default.
- W3208582104 creator A5054186394 @default.
- W3208582104 creator A5080169353 @default.
- W3208582104 date "2021-07-16" @default.
- W3208582104 modified "2023-09-25" @default.
- W3208582104 title "An Integrated Climate and Spatio-temporal Determinant for Influenza Forecasting based on Convolution Neural Network" @default.
- W3208582104 cites W1995205965 @default.
- W3208582104 cites W2074840499 @default.
- W3208582104 cites W2079635032 @default.
- W3208582104 cites W2100253428 @default.
- W3208582104 cites W2103900801 @default.
- W3208582104 cites W2112796928 @default.
- W3208582104 cites W2114890800 @default.
- W3208582104 cites W2147194983 @default.
- W3208582104 cites W2252436850 @default.
- W3208582104 cites W2290494549 @default.
- W3208582104 cites W2610490986 @default.
- W3208582104 cites W2753119878 @default.
- W3208582104 cites W4302331569 @default.
- W3208582104 doi "https://doi.org/10.1145/3479162.3479178" @default.
- W3208582104 hasPublicationYear "2021" @default.
- W3208582104 type Work @default.
- W3208582104 sameAs 3208582104 @default.
- W3208582104 citedByCount "0" @default.
- W3208582104 crossrefType "proceedings-article" @default.
- W3208582104 hasAuthorship W3208582104A5002320059 @default.
- W3208582104 hasAuthorship W3208582104A5054186394 @default.
- W3208582104 hasAuthorship W3208582104A5080169353 @default.
- W3208582104 hasConcept C105795698 @default.
- W3208582104 hasConcept C108583219 @default.
- W3208582104 hasConcept C138885662 @default.
- W3208582104 hasConcept C139945424 @default.
- W3208582104 hasConcept C147168706 @default.
- W3208582104 hasConcept C150217764 @default.
- W3208582104 hasConcept C153180895 @default.
- W3208582104 hasConcept C154945302 @default.
- W3208582104 hasConcept C2776401178 @default.
- W3208582104 hasConcept C33923547 @default.
- W3208582104 hasConcept C41008148 @default.
- W3208582104 hasConcept C41895202 @default.
- W3208582104 hasConcept C45347329 @default.
- W3208582104 hasConcept C50644808 @default.
- W3208582104 hasConcept C81363708 @default.
- W3208582104 hasConceptScore W3208582104C105795698 @default.
- W3208582104 hasConceptScore W3208582104C108583219 @default.
- W3208582104 hasConceptScore W3208582104C138885662 @default.
- W3208582104 hasConceptScore W3208582104C139945424 @default.
- W3208582104 hasConceptScore W3208582104C147168706 @default.
- W3208582104 hasConceptScore W3208582104C150217764 @default.
- W3208582104 hasConceptScore W3208582104C153180895 @default.
- W3208582104 hasConceptScore W3208582104C154945302 @default.
- W3208582104 hasConceptScore W3208582104C2776401178 @default.
- W3208582104 hasConceptScore W3208582104C33923547 @default.
- W3208582104 hasConceptScore W3208582104C41008148 @default.
- W3208582104 hasConceptScore W3208582104C41895202 @default.
- W3208582104 hasConceptScore W3208582104C45347329 @default.
- W3208582104 hasConceptScore W3208582104C50644808 @default.
- W3208582104 hasConceptScore W3208582104C81363708 @default.
- W3208582104 hasLocation W32085821041 @default.
- W3208582104 hasOpenAccess W3208582104 @default.
- W3208582104 hasPrimaryLocation W32085821041 @default.
- W3208582104 hasRelatedWork W11765363 @default.
- W3208582104 hasRelatedWork W12546350 @default.
- W3208582104 hasRelatedWork W13678974 @default.
- W3208582104 hasRelatedWork W1383942 @default.
- W3208582104 hasRelatedWork W2585641 @default.
- W3208582104 hasRelatedWork W5535156 @default.
- W3208582104 hasRelatedWork W7958345 @default.
- W3208582104 hasRelatedWork W8656678 @default.
- W3208582104 hasRelatedWork W9190101 @default.
- W3208582104 hasRelatedWork W9362070 @default.
- W3208582104 isParatext "false" @default.
- W3208582104 isRetracted "false" @default.
- W3208582104 magId "3208582104" @default.
- W3208582104 workType "article" @default.