Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208596757> ?p ?o ?g. }
- W3208596757 abstract "Random features approach has been widely used for kernel approximation in large-scale machine learning. A number of recent studies have explored data-dependent sampling of features, modifying the stochastic oracle from which random features are sampled. While proposed techniques in this realm improve the approximation, their suitability is often verified on a single learning task. In this paper, we propose a task-specific scoring rule for selecting random features, which can be employed for different applications with some adjustments. We restrict our attention to Canonical Correlation Analysis (CCA), and we provide a novel, principled guide for finding the score function maximizing the canonical correlations. We prove that this method, called ORCCA, can outperform (in expectation) the corresponding Kernel CCA with a default kernel. Numerical experiments verify that ORCCA is significantly superior than other approximation techniques in the CCA task." @default.
- W3208596757 created "2021-11-08" @default.
- W3208596757 creator A5040922600 @default.
- W3208596757 creator A5069098060 @default.
- W3208596757 date "2019-10-11" @default.
- W3208596757 modified "2023-09-24" @default.
- W3208596757 title "ORCCA: Optimal Randomized Canonical Correlation Analysis" @default.
- W3208596757 cites W1523385540 @default.
- W3208596757 cites W1814624729 @default.
- W3208596757 cites W1988219946 @default.
- W3208596757 cites W1988813039 @default.
- W3208596757 cites W1994935303 @default.
- W3208596757 cites W2001916575 @default.
- W3208596757 cites W2025341678 @default.
- W3208596757 cites W2068581004 @default.
- W3208596757 cites W2095841525 @default.
- W3208596757 cites W2100039146 @default.
- W3208596757 cites W2100235303 @default.
- W3208596757 cites W2118563516 @default.
- W3208596757 cites W2123395972 @default.
- W3208596757 cites W2124101779 @default.
- W3208596757 cites W2130055251 @default.
- W3208596757 cites W2137201712 @default.
- W3208596757 cites W2138995291 @default.
- W3208596757 cites W2144902422 @default.
- W3208596757 cites W2530846021 @default.
- W3208596757 cites W2544176167 @default.
- W3208596757 cites W2549898883 @default.
- W3208596757 cites W2579029485 @default.
- W3208596757 cites W2594290559 @default.
- W3208596757 cites W2739480064 @default.
- W3208596757 cites W2741352581 @default.
- W3208596757 cites W2783173735 @default.
- W3208596757 cites W2891234027 @default.
- W3208596757 cites W2905119692 @default.
- W3208596757 cites W2923233923 @default.
- W3208596757 cites W2945082959 @default.
- W3208596757 cites W2953256123 @default.
- W3208596757 cites W2962840796 @default.
- W3208596757 cites W2962910688 @default.
- W3208596757 cites W2962967271 @default.
- W3208596757 cites W2963013450 @default.
- W3208596757 cites W2963016643 @default.
- W3208596757 cites W2963389768 @default.
- W3208596757 cites W2963459001 @default.
- W3208596757 cites W2963477567 @default.
- W3208596757 cites W2963709899 @default.
- W3208596757 cites W2963755879 @default.
- W3208596757 cites W2964004339 @default.
- W3208596757 cites W2964153027 @default.
- W3208596757 cites W2964197745 @default.
- W3208596757 cites W2970948008 @default.
- W3208596757 cites W3034445294 @default.
- W3208596757 cites W3045725493 @default.
- W3208596757 cites W3163644211 @default.
- W3208596757 cites W2898071315 @default.
- W3208596757 doi "https://doi.org/10.48550/arxiv.1910.05384" @default.
- W3208596757 hasPublicationYear "2019" @default.
- W3208596757 type Work @default.
- W3208596757 sameAs 3208596757 @default.
- W3208596757 citedByCount "0" @default.
- W3208596757 crossrefType "posted-content" @default.
- W3208596757 hasAuthorship W3208596757A5040922600 @default.
- W3208596757 hasAuthorship W3208596757A5069098060 @default.
- W3208596757 hasBestOaLocation W32085967571 @default.
- W3208596757 hasConcept C11413529 @default.
- W3208596757 hasConcept C115903868 @default.
- W3208596757 hasConcept C117220453 @default.
- W3208596757 hasConcept C118615104 @default.
- W3208596757 hasConcept C119857082 @default.
- W3208596757 hasConcept C122280245 @default.
- W3208596757 hasConcept C12267149 @default.
- W3208596757 hasConcept C153874254 @default.
- W3208596757 hasConcept C154945302 @default.
- W3208596757 hasConcept C162324750 @default.
- W3208596757 hasConcept C187736073 @default.
- W3208596757 hasConcept C2524010 @default.
- W3208596757 hasConcept C2780451532 @default.
- W3208596757 hasConcept C33923547 @default.
- W3208596757 hasConcept C41008148 @default.
- W3208596757 hasConcept C55166926 @default.
- W3208596757 hasConcept C74193536 @default.
- W3208596757 hasConceptScore W3208596757C11413529 @default.
- W3208596757 hasConceptScore W3208596757C115903868 @default.
- W3208596757 hasConceptScore W3208596757C117220453 @default.
- W3208596757 hasConceptScore W3208596757C118615104 @default.
- W3208596757 hasConceptScore W3208596757C119857082 @default.
- W3208596757 hasConceptScore W3208596757C122280245 @default.
- W3208596757 hasConceptScore W3208596757C12267149 @default.
- W3208596757 hasConceptScore W3208596757C153874254 @default.
- W3208596757 hasConceptScore W3208596757C154945302 @default.
- W3208596757 hasConceptScore W3208596757C162324750 @default.
- W3208596757 hasConceptScore W3208596757C187736073 @default.
- W3208596757 hasConceptScore W3208596757C2524010 @default.
- W3208596757 hasConceptScore W3208596757C2780451532 @default.
- W3208596757 hasConceptScore W3208596757C33923547 @default.
- W3208596757 hasConceptScore W3208596757C41008148 @default.
- W3208596757 hasConceptScore W3208596757C55166926 @default.
- W3208596757 hasConceptScore W3208596757C74193536 @default.
- W3208596757 hasLocation W32085967571 @default.