Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208598652> ?p ?o ?g. }
- W3208598652 abstract "We study the problem of predicting student knowledge acquisition in online courses from clickstream behavior. Motivated by the proliferation of eLearning lecture delivery, we specifically focus on student in-video activity in lectures videos, which consist of content and in-video quizzes. Our methodology for predicting in-video quiz performance is based on three key ideas we develop. First, we model students' clicking behavior via time-series learning architectures operating on raw event data, rather than defining hand-crafted features as in existing approaches that may lose important information embedded within the click sequences. Second, we develop a self-supervised clickstream pre-training to learn informative representations of clickstream events that can initialize the prediction model effectively. Third, we propose a clustering guided meta-learning-based training that optimizes the prediction model to exploit clusters of frequent patterns in student clickstream sequences. Through experiments on three real-world datasets, we demonstrate that our method obtains substantial improvements over two baseline models in predicting students' in-video quiz performance. Further, we validate the importance of the pre-training and meta-learning components of our framework through ablation studies. Finally, we show how our methodology reveals insights on video-watching behavior associated with knowledge acquisition for useful learning analytics." @default.
- W3208598652 created "2021-11-08" @default.
- W3208598652 creator A5000769601 @default.
- W3208598652 creator A5020399355 @default.
- W3208598652 creator A5049462632 @default.
- W3208598652 creator A5063813962 @default.
- W3208598652 creator A5078368501 @default.
- W3208598652 creator A5090537862 @default.
- W3208598652 date "2021-10-28" @default.
- W3208598652 modified "2023-10-18" @default.
- W3208598652 title "Click-Based Student Performance Prediction: A Clustering Guided Meta-Learning Approach" @default.
- W3208598652 cites W1492355514 @default.
- W3208598652 cites W1614298861 @default.
- W3208598652 cites W1792679987 @default.
- W3208598652 cites W1901616594 @default.
- W3208598652 cites W1924770834 @default.
- W3208598652 cites W1977556410 @default.
- W3208598652 cites W1981976566 @default.
- W3208598652 cites W1989684337 @default.
- W3208598652 cites W1994740530 @default.
- W3208598652 cites W2042464029 @default.
- W3208598652 cites W2081112272 @default.
- W3208598652 cites W2132984949 @default.
- W3208598652 cites W2133736058 @default.
- W3208598652 cites W2164972124 @default.
- W3208598652 cites W2170738476 @default.
- W3208598652 cites W2250880511 @default.
- W3208598652 cites W2412453891 @default.
- W3208598652 cites W2546314413 @default.
- W3208598652 cites W2559094423 @default.
- W3208598652 cites W2564474075 @default.
- W3208598652 cites W2575521943 @default.
- W3208598652 cites W2604763608 @default.
- W3208598652 cites W2612657834 @default.
- W3208598652 cites W2754427584 @default.
- W3208598652 cites W2769764771 @default.
- W3208598652 cites W2796327958 @default.
- W3208598652 cites W2804728440 @default.
- W3208598652 cites W2806245267 @default.
- W3208598652 cites W2809400860 @default.
- W3208598652 cites W2884561390 @default.
- W3208598652 cites W2890908824 @default.
- W3208598652 cites W2891798629 @default.
- W3208598652 cites W2894135568 @default.
- W3208598652 cites W2895130765 @default.
- W3208598652 cites W2896763200 @default.
- W3208598652 cites W2896905057 @default.
- W3208598652 cites W2912015447 @default.
- W3208598652 cites W2945991725 @default.
- W3208598652 cites W2950004900 @default.
- W3208598652 cites W2963015609 @default.
- W3208598652 cites W2963872107 @default.
- W3208598652 cites W2964565903 @default.
- W3208598652 cites W3004474768 @default.
- W3208598652 cites W3004775711 @default.
- W3208598652 cites W3012429909 @default.
- W3208598652 cites W3015651246 @default.
- W3208598652 cites W3048230328 @default.
- W3208598652 cites W3082384720 @default.
- W3208598652 cites W3094309768 @default.
- W3208598652 cites W3097672916 @default.
- W3208598652 cites W3144499123 @default.
- W3208598652 cites W3190396572 @default.
- W3208598652 cites W2303127372 @default.
- W3208598652 doi "https://doi.org/10.48550/arxiv.2111.00901" @default.
- W3208598652 hasPublicationYear "2021" @default.
- W3208598652 type Work @default.
- W3208598652 sameAs 3208598652 @default.
- W3208598652 citedByCount "0" @default.
- W3208598652 crossrefType "posted-content" @default.
- W3208598652 hasAuthorship W3208598652A5000769601 @default.
- W3208598652 hasAuthorship W3208598652A5020399355 @default.
- W3208598652 hasAuthorship W3208598652A5049462632 @default.
- W3208598652 hasAuthorship W3208598652A5063813962 @default.
- W3208598652 hasAuthorship W3208598652A5078368501 @default.
- W3208598652 hasAuthorship W3208598652A5090537862 @default.
- W3208598652 hasBestOaLocation W32085986521 @default.
- W3208598652 hasConcept C110875604 @default.
- W3208598652 hasConcept C111368507 @default.
- W3208598652 hasConcept C119857082 @default.
- W3208598652 hasConcept C121332964 @default.
- W3208598652 hasConcept C124101348 @default.
- W3208598652 hasConcept C12725497 @default.
- W3208598652 hasConcept C127313418 @default.
- W3208598652 hasConcept C127613066 @default.
- W3208598652 hasConcept C130436687 @default.
- W3208598652 hasConcept C136764020 @default.
- W3208598652 hasConcept C138744977 @default.
- W3208598652 hasConcept C154945302 @default.
- W3208598652 hasConcept C162324750 @default.
- W3208598652 hasConcept C165696696 @default.
- W3208598652 hasConcept C187736073 @default.
- W3208598652 hasConcept C26517878 @default.
- W3208598652 hasConcept C2777648619 @default.
- W3208598652 hasConcept C2779662365 @default.
- W3208598652 hasConcept C2780451532 @default.
- W3208598652 hasConcept C38652104 @default.
- W3208598652 hasConcept C41008148 @default.
- W3208598652 hasConcept C49774154 @default.
- W3208598652 hasConcept C62520636 @default.