Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208601135> ?p ?o ?g. }
- W3208601135 endingPage "100884" @default.
- W3208601135 startingPage "100884" @default.
- W3208601135 abstract "Chronic wounds significantly impact quality of life. They can rapidly deteriorate and require close monitoring of healing progress. Image-based wound analysis is a way of objectively assessing the wound status by quantifying important features that are related to healing. However, high heterogeneity of the wound types and imaging conditions challenge the robust segmentation of wound images. We present Detect-and-Segment (DS), a deep learning approach to produce wound segmentation maps with high generalization capabilities. In our approach, dedicated deep neural networks detected the wound position, isolated the wound from the perturbing background, and computed a wound segmentation map. We tested this approach on a diabetic foot ulcers data set and compared it to a segmentation method based on the full image. To evaluate its generalizability on out-of-distribution data, we measured the performance of the DS approach on 4 additional independent data sets, with larger variety of wound types from different body locations. The Matthews’ correlation coefficient (MCC) improved from 0.29 (full image) to 0.85 (DS) on the diabetic foot ulcer data set. When the DS was tested on the independent data sets, the mean MCC increased from 0.17 to 0.85 . Furthermore, the DS enabled the training of segmentation models with up to 90% less training data without impacting the segmentation performance. The proposed DS approach is a step towards automating wound analysis and reducing efforts to manage chronic wounds." @default.
- W3208601135 created "2021-11-08" @default.
- W3208601135 creator A5003319076 @default.
- W3208601135 creator A5027240571 @default.
- W3208601135 creator A5050797602 @default.
- W3208601135 creator A5054554254 @default.
- W3208601135 creator A5059359523 @default.
- W3208601135 creator A5072353591 @default.
- W3208601135 creator A5078826545 @default.
- W3208601135 date "2022-01-01" @default.
- W3208601135 modified "2023-10-18" @default.
- W3208601135 title "Detect-and-segment: A deep learning approach to automate wound image segmentation" @default.
- W3208601135 cites W1573651986 @default.
- W3208601135 cites W1639408933 @default.
- W3208601135 cites W1969965719 @default.
- W3208601135 cites W1989544085 @default.
- W3208601135 cites W2006655167 @default.
- W3208601135 cites W2012451945 @default.
- W3208601135 cites W2054672934 @default.
- W3208601135 cites W2093274439 @default.
- W3208601135 cites W2105511530 @default.
- W3208601135 cites W2161353253 @default.
- W3208601135 cites W2343172899 @default.
- W3208601135 cites W2497708464 @default.
- W3208601135 cites W2521287783 @default.
- W3208601135 cites W2555943799 @default.
- W3208601135 cites W2574904481 @default.
- W3208601135 cites W2592929672 @default.
- W3208601135 cites W2620760558 @default.
- W3208601135 cites W2794022343 @default.
- W3208601135 cites W2804047627 @default.
- W3208601135 cites W2884561390 @default.
- W3208601135 cites W2885303411 @default.
- W3208601135 cites W2890781352 @default.
- W3208601135 cites W2963150697 @default.
- W3208601135 cites W2964227007 @default.
- W3208601135 cites W3015600294 @default.
- W3208601135 cites W3035160371 @default.
- W3208601135 cites W3035546112 @default.
- W3208601135 cites W3102785203 @default.
- W3208601135 cites W3111142877 @default.
- W3208601135 cites W3157606576 @default.
- W3208601135 cites W3170841864 @default.
- W3208601135 cites W3185640982 @default.
- W3208601135 doi "https://doi.org/10.1016/j.imu.2022.100884" @default.
- W3208601135 hasPublicationYear "2022" @default.
- W3208601135 type Work @default.
- W3208601135 sameAs 3208601135 @default.
- W3208601135 citedByCount "17" @default.
- W3208601135 countsByYear W32086011352022 @default.
- W3208601135 countsByYear W32086011352023 @default.
- W3208601135 crossrefType "journal-article" @default.
- W3208601135 hasAuthorship W3208601135A5003319076 @default.
- W3208601135 hasAuthorship W3208601135A5027240571 @default.
- W3208601135 hasAuthorship W3208601135A5050797602 @default.
- W3208601135 hasAuthorship W3208601135A5054554254 @default.
- W3208601135 hasAuthorship W3208601135A5059359523 @default.
- W3208601135 hasAuthorship W3208601135A5072353591 @default.
- W3208601135 hasAuthorship W3208601135A5078826545 @default.
- W3208601135 hasBestOaLocation W32086011351 @default.
- W3208601135 hasConcept C105795698 @default.
- W3208601135 hasConcept C108583219 @default.
- W3208601135 hasConcept C124504099 @default.
- W3208601135 hasConcept C153180895 @default.
- W3208601135 hasConcept C154945302 @default.
- W3208601135 hasConcept C27158222 @default.
- W3208601135 hasConcept C31972630 @default.
- W3208601135 hasConcept C33923547 @default.
- W3208601135 hasConcept C41008148 @default.
- W3208601135 hasConcept C58489278 @default.
- W3208601135 hasConcept C89600930 @default.
- W3208601135 hasConceptScore W3208601135C105795698 @default.
- W3208601135 hasConceptScore W3208601135C108583219 @default.
- W3208601135 hasConceptScore W3208601135C124504099 @default.
- W3208601135 hasConceptScore W3208601135C153180895 @default.
- W3208601135 hasConceptScore W3208601135C154945302 @default.
- W3208601135 hasConceptScore W3208601135C27158222 @default.
- W3208601135 hasConceptScore W3208601135C31972630 @default.
- W3208601135 hasConceptScore W3208601135C33923547 @default.
- W3208601135 hasConceptScore W3208601135C41008148 @default.
- W3208601135 hasConceptScore W3208601135C58489278 @default.
- W3208601135 hasConceptScore W3208601135C89600930 @default.
- W3208601135 hasFunder F4320310389 @default.
- W3208601135 hasFunder F4320320241 @default.
- W3208601135 hasFunder F4320320924 @default.
- W3208601135 hasLocation W32086011351 @default.
- W3208601135 hasLocation W32086011352 @default.
- W3208601135 hasLocation W32086011353 @default.
- W3208601135 hasLocation W32086011354 @default.
- W3208601135 hasOpenAccess W3208601135 @default.
- W3208601135 hasPrimaryLocation W32086011351 @default.
- W3208601135 hasRelatedWork W1669643531 @default.
- W3208601135 hasRelatedWork W1982826852 @default.
- W3208601135 hasRelatedWork W2005437358 @default.
- W3208601135 hasRelatedWork W2008656436 @default.
- W3208601135 hasRelatedWork W2023558673 @default.
- W3208601135 hasRelatedWork W2110230079 @default.
- W3208601135 hasRelatedWork W2134924024 @default.