Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208666387> ?p ?o ?g. }
- W3208666387 abstract "Abstract Artificial neural network (ANN) is the main tool to dig data and was inspired by the human brain and nervous system. Several studies clarified its application in medicine. However, none has applied ANN to predict the efficacy of folic acid treatment to Hyperhomocysteinemia (HHcy). The efficacy has been proved to associate with both genetic and environmental factors while previous studies just focused on the latter one. The explained variance genetic risk score (EV-GRS) had better power and could represent the effect of genetic architectures. Our aim was to add EV-GRS into environmental factors to establish ANN to predict the efficacy of folic acid therapy to HHcy. We performed the prospective cohort research enrolling 638 HHcy patients. The multilayer perception algorithm was applied to construct ANN. To evaluate the effect of ANN, we also established logistic regression (LR) model to compare with ANN. According to our results, EV-GRS was statistically associated with the efficacy no matter analyzed as a continuous variable (OR = 3.301, 95%CI 1.954–5.576, P < 0.001) or category variable (OR = 3.870, 95%CI 2.092–7.159, P < 0.001). In our ANN model, the accuracy was 84.78%, the Youden’s index was 0.7073 and the AUC was 0.938. These indexes above indicated higher power. When compared with LR, the AUC, accuracy, and Youden’s index of the ANN model (84.78%, 0.938, 0.7073) were all slightly higher than the LR model (83.33% 0.910, 0.6687). Therefore, clinical application of the ANN model may be able to better predict the folic acid efficacy to HHcy than the traditional LR model. When testing two models in the validation set, we got the same conclusion. This study appears to be the first one to establish the ANN model which added EV-GRS into environmental factors to predict the efficacy of folic acid to HHcy. This model would be able to offer clinicians a new method to make decisions and individual therapeutic plans." @default.
- W3208666387 created "2021-11-08" @default.
- W3208666387 creator A5016241201 @default.
- W3208666387 creator A5023253950 @default.
- W3208666387 creator A5027764469 @default.
- W3208666387 creator A5031688017 @default.
- W3208666387 creator A5037358346 @default.
- W3208666387 creator A5042328954 @default.
- W3208666387 creator A5057593112 @default.
- W3208666387 creator A5068433742 @default.
- W3208666387 creator A5071726986 @default.
- W3208666387 date "2021-11-02" @default.
- W3208666387 modified "2023-10-16" @default.
- W3208666387 title "Combining genetic risk score with artificial neural network to predict the efficacy of folic acid therapy to hyperhomocysteinemia" @default.
- W3208666387 cites W148810285 @default.
- W3208666387 cites W1835690719 @default.
- W3208666387 cites W1977544966 @default.
- W3208666387 cites W1996736270 @default.
- W3208666387 cites W1997064745 @default.
- W3208666387 cites W2018066285 @default.
- W3208666387 cites W2022906464 @default.
- W3208666387 cites W2033996503 @default.
- W3208666387 cites W2095403671 @default.
- W3208666387 cites W2115286242 @default.
- W3208666387 cites W2121394390 @default.
- W3208666387 cites W2122202168 @default.
- W3208666387 cites W2201949845 @default.
- W3208666387 cites W2230758377 @default.
- W3208666387 cites W2320515201 @default.
- W3208666387 cites W2463234928 @default.
- W3208666387 cites W2564791907 @default.
- W3208666387 cites W2602906219 @default.
- W3208666387 cites W2753064718 @default.
- W3208666387 cites W2766351669 @default.
- W3208666387 cites W2789722850 @default.
- W3208666387 cites W2795277962 @default.
- W3208666387 cites W2798262430 @default.
- W3208666387 cites W2800651338 @default.
- W3208666387 cites W2802856568 @default.
- W3208666387 cites W2803458386 @default.
- W3208666387 cites W2841134148 @default.
- W3208666387 cites W2888504867 @default.
- W3208666387 cites W2892195519 @default.
- W3208666387 cites W2899909823 @default.
- W3208666387 cites W2901634660 @default.
- W3208666387 cites W2909745401 @default.
- W3208666387 cites W2933590561 @default.
- W3208666387 cites W2934238135 @default.
- W3208666387 cites W2975915269 @default.
- W3208666387 cites W3005475725 @default.
- W3208666387 cites W3024880109 @default.
- W3208666387 cites W3039194809 @default.
- W3208666387 cites W3043050949 @default.
- W3208666387 cites W3045989533 @default.
- W3208666387 cites W3046594723 @default.
- W3208666387 doi "https://doi.org/10.1038/s41598-021-00938-8" @default.
- W3208666387 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8563886" @default.
- W3208666387 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34728708" @default.
- W3208666387 hasPublicationYear "2021" @default.
- W3208666387 type Work @default.
- W3208666387 sameAs 3208666387 @default.
- W3208666387 citedByCount "1" @default.
- W3208666387 countsByYear W32086663872022 @default.
- W3208666387 crossrefType "journal-article" @default.
- W3208666387 hasAuthorship W3208666387A5016241201 @default.
- W3208666387 hasAuthorship W3208666387A5023253950 @default.
- W3208666387 hasAuthorship W3208666387A5027764469 @default.
- W3208666387 hasAuthorship W3208666387A5031688017 @default.
- W3208666387 hasAuthorship W3208666387A5037358346 @default.
- W3208666387 hasAuthorship W3208666387A5042328954 @default.
- W3208666387 hasAuthorship W3208666387A5057593112 @default.
- W3208666387 hasAuthorship W3208666387A5068433742 @default.
- W3208666387 hasAuthorship W3208666387A5071726986 @default.
- W3208666387 hasBestOaLocation W32086663871 @default.
- W3208666387 hasConcept C105795698 @default.
- W3208666387 hasConcept C126322002 @default.
- W3208666387 hasConcept C151956035 @default.
- W3208666387 hasConcept C154945302 @default.
- W3208666387 hasConcept C2776523773 @default.
- W3208666387 hasConcept C2777090595 @default.
- W3208666387 hasConcept C2992130864 @default.
- W3208666387 hasConcept C33923547 @default.
- W3208666387 hasConcept C41008148 @default.
- W3208666387 hasConcept C43346845 @default.
- W3208666387 hasConcept C50644808 @default.
- W3208666387 hasConcept C58471807 @default.
- W3208666387 hasConcept C71924100 @default.
- W3208666387 hasConceptScore W3208666387C105795698 @default.
- W3208666387 hasConceptScore W3208666387C126322002 @default.
- W3208666387 hasConceptScore W3208666387C151956035 @default.
- W3208666387 hasConceptScore W3208666387C154945302 @default.
- W3208666387 hasConceptScore W3208666387C2776523773 @default.
- W3208666387 hasConceptScore W3208666387C2777090595 @default.
- W3208666387 hasConceptScore W3208666387C2992130864 @default.
- W3208666387 hasConceptScore W3208666387C33923547 @default.
- W3208666387 hasConceptScore W3208666387C41008148 @default.
- W3208666387 hasConceptScore W3208666387C43346845 @default.
- W3208666387 hasConceptScore W3208666387C50644808 @default.
- W3208666387 hasConceptScore W3208666387C58471807 @default.
- W3208666387 hasConceptScore W3208666387C71924100 @default.